0000000000199615
AUTHOR
María Collantes
Meox2/Tcf15 Heterodimers Program the Heart Capillary Endothelium for Cardiac Fatty Acid Uptake
Background— Microvascular endothelium in different organs is specialized to fulfill the particular needs of parenchymal cells. However, specific information about heart capillary endothelial cells (ECs) is lacking. Methods and Results— Using microarray profiling on freshly isolated ECs from heart, brain, and liver, we revealed a genetic signature for microvascular heart ECs and identified Meox2/Tcf15 heterodimers as novel transcriptional determinants. This signature was largely shared with skeletal muscle and adipose tissue endothelium and was enriched in genes encoding fatty acid (FA) transport–related proteins. Using gain- and loss-of-function approaches, we showed that Meox2/Tcf15 media…
The inhibitor of differentiation-1 (Id1) enables lung cancer liver colonization through activation of an EMT program in tumor cells and establishment of the pre-metastatic niche
Abstract: Id1 promotes carcinogenesis and metastasis, and predicts prognosis of non-small cell lung cancer (NSCLC)-adenocarcionoma patients. We hypothesized that Id1 may play a critical role in lung cancer colonization of the liver by affecting both tumor cells and the microenvironment. Depleted levels of Id1 in LLC (Lewis lung carcinoma cells, LLC shId1) significantly reduced cell proliferation and migration in vitro. Genetic loss of Id1 in the host tissue (Id1(-/-) mice) impaired liver colonization and increased survival of Id1 animals. Histologically, the presence of Idl in tumor cells of liver metastasis was responsible for liver colonization. Microarray analysis comparing liver tumor n…
Transplantation of Mesenchymal Stem Cells Exerts a Greater Long-Term Effect than Bone Marrow Mononuclear Cells in a Chronic Myocardial Infarction Model in Rat
The aim of this study is to assess the long-term effect of mesenchymal stem cells (MSC) transplantation in a rat model of chronic myocardial infarction (MI) in comparison with the effect of bone marrow mononuclear cells (BM-MNC) transplant. Five weeks after induction of MI, rats were allocated to receive intramyocardial injection of 106 GFP-expressing cells (BM-MNC or MSC) or medium as control. Heart function (echocardiography and 18F-FDG-microPET) and histological studies were performed 3 months after transplantation and cell fate was analyzed along the experiment (1 and 2 weeks and 1 and 3 months). The main findings of this study were that both BM-derived populations, BM-MNC and MSC, ind…