0000000000199618
AUTHOR
Michael Rohlfing
First-principles calculations of the atomic and electronic structure of SrZrO3 and PbZrO3 (001) and (011) surfaces.
We present the results of calculations of surface relaxations, rumplings, energetics, optical band gaps, and charge distribution for the SrZrO(3) and PbZrO(3) (001) and (011) surfaces using the ab initio code CRYSTAL and a hybrid description of exchange and correlation. We consider both SrO(PbO) and ZrO(2) terminations of the (001) surface and Sr(Pb), ZrO, and O terminations of the polar SrZrO(3) and PbZrO(3) (011) surfaces. On the (001) surfaces, we find that all upper and third layer atoms relax inward, while outward relaxations of all atoms in the second layer are found with the sole exception of the SrO-terminated SrZrO(3) (001) surface second layer O atom. Between all (001) and (011) s…
Cooperative mechanism for anchoring highly polar molecules at an ionic surface
Structure formation of the highly polar molecule cytosine on the (111) cleavage plane of calcium fluoride is investigated in ultrahigh vacuum using noncontact atomic force microscopy at room temperature. Molecules form well-defined trimer structures, covering the surface as homogeneously distributed stable structures. Density-functional theory calculations yield a diffusion barrier of about 0.5 eV for individual molecules suggesting that they are mobile at room temperature. Furthermore, it is predicted that the molecules can form trimers in a configuration allowing all molecules to attain their optimum adsorption position on the substrate. As the trimer geometry facilitates hydrogen bonding…
Single-molecule switching with non-contact atomic force microscopy
We report upon controlled switching of a single 3,4,9,10-perylene tetracarboxylic diimide derivative molecule on a rutile TiO(2)(110) surface using a non-contact atomic force microscope at room temperature. After submonolayer deposition, the molecules adsorb tilted on the bridging oxygen row. Individual molecules can be manipulated by the atomic force microscope tip in a well-controlled manner. The molecules are switched from one side of the row to the other using a simple approach, taking benefit of the sample tilt and the topography of the titania substrate. From density functional theory investigations we obtain the adsorption energies of different positions of the molecule. These adsorp…
Combined NC-AFM and DFT study of the adsorption geometry of trimesic acid on rutile TiO2(110)
The adsorption behavior of trimesic acid (TMA) on rutile TiO(2)(110) is studied by means of non-contact atomic force microscopy (NC-AFM) and density-functional theory (DFT). Upon low-coverage adsorption at room temperature, NC-AFM imaging reveals individual molecules, centered above the surface titanium rows. Based on the NC-AFM results alone it is difficult to deduce whether the molecules are lying flat or standing upright on the surface. To elucidate the detailed adsorption geometry, we perform DFT calculations, considering a large number of different adsorption positions. Our DFT calculations suggest that single TMA molecules adsorb with the benzene ring parallel to the surface plane. In…