0000000000199802
AUTHOR
Michiharu Wada
The laser and optical system for the RIBF-PALIS experiment
Abstract This paper describes the laser and optical system for the Parasitic radioactive isotope (RI) beam production by Laser Ion-Source (PALIS) in the RIKEN fragment separator facility. This system requires an optical path length of 70 m for transporting the laser beam from the laser light source to the place for resonance ionization. To accomplish this, we designed and implemented a simple optical system consisting of several mirrors equipped with compact stepping motor actuators, lenses, beam spot screens and network cameras. The system enables multi-step laser resonance ionization in the gas cell and gas jet via overlap with a diameter of a few millimeters, between the laser photons an…
Development of resonance ionization in a supersonic gas-jet for studies of short-lived and long-lived radioactive nuclei
High-resolution resonance ionization spectroscopy (RIS) is required for laser spectroscopy and trace analysis of short-lived and long-lived radioactive nuclei. We have proposed high-resolution resonance ionization spectroscopy in a gas jet combined with a narrow band-width injection-locked Ti:Sapphire laser. Resonance ionization of stable 93Nb in a gas jet was demonstrated using a broad bandwidth Ti:Sapphire laser. In addition, a setup for high-resolution RIS in a gas-jet was designed using numerical simulations of the gas-jet conditions based on computational fluid dynamics.