0000000000199804

AUTHOR

Takahide Takamatsu

The laser and optical system for the RIBF-PALIS experiment

Abstract This paper describes the laser and optical system for the Parasitic radioactive isotope (RI) beam production by Laser Ion-Source (PALIS) in the RIKEN fragment separator facility. This system requires an optical path length of 70 m for transporting the laser beam from the laser light source to the place for resonance ionization. To accomplish this, we designed and implemented a simple optical system consisting of several mirrors equipped with compact stepping motor actuators, lenses, beam spot screens and network cameras. The system enables multi-step laser resonance ionization in the gas cell and gas jet via overlap with a diameter of a few millimeters, between the laser photons an…

research product

Development of High Resolution Resonance Ionization Mass Spectrometry for Neutron Dosimetry Technique with93Nb(n,n')93mNb Reaction

We have proposed an advanced technique to measure the 93mNb yield precisely by Resonance Ionization Mass Spectrometry, instead of conventional characteristic X-ray spectroscopy. 93mNb-selective resonance ionization is achievable by distinguishing the hyperfine splitting of the atomic energy levels between 93Nb and 93mNb at high resolution. In advance of 93mNb detection, we could successfully demonstrate high resolution resonant ionization spectroscopy of stable 93Nb using an all solid-state, narrowband and tunable Ti:Sapphire laser system operated at 1 kHz repetition rate. peerReviewed

research product

Development of a sequential data correction method for isotope ratio analysis by resonance ionization mass spectrometry

A sequential data correction method using several experimental parameters of pulsed resonance ionization mass spectrometry was developed to reduce mass discrimination effects for isotope ratio analysis as well as fluctuations in the ion count rate. This correction method was applied to isotope ratio determination of stable titanium isotopes using a two-step, single color ionization scheme. A significant improvement of the precision of the measured isotopic ratio of stable titanium isotopes was demonstrated after correction with a parameter set consisting of laser power, atmospheric pressure, and laser frequency.

research product