0000000000200235

AUTHOR

Leigh H. Whitehead

Volume IV The DUNE far detector single-phase technology

This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. The DUNE collaboration also acknowledges the international, national, and regional funding agencies supporting the institutions who have contributed to completing this Technical Design Report.

research product

First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform

The ProtoDUNE-SP detector was constructed and operated on the CERN Neutrino Platform. We thank the CERN management for providing the infrastructure for this experiment and gratefully acknowledge the support of the CERN EP, BE, TE, EN, IT and IPT Departments for NP04/ProtoDUNE-SP. This documentwas prepared by theDUNEcollaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MSMT, Czech Republi…

research product

Neutrino interaction classification with a convolutional neural network in the DUNE far detector

The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino…

research product

Measurements of the T2K neutrino beam properties using the INGRID on-axis near detector

Precise measurement of neutrino beam direction and intensity was achieved based on a new concept with modularized neutrino detectors. INGRID (Interactive Neutrino GRID) is an on-axis near detector for the T2K long baseline neutrino oscillation experiment. INGRID consists of 16 identical modules arranged in horizontal and vertical arrays around the beam center. The module has a sandwich structure of iron target plates and scintillator trackers. INGRID directly monitors the muon neutrino beam profile center and intensity using the number of observed neutrino events in each module. The neutrino beam direction is measured with accuracy better than 0.4 mrad from the measured profile center. The …

research product

Volume I. Introduction to DUNE

Journal of Instrumentation 15(08), T08008 (1-228) (2020). doi:10.1088/1748-0221/15/08/T08008

research product

Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam

The T2K experiment observes indications of $\nu_\mu\rightarrow \nu_e$ appearance in data accumulated with $1.43\times10^{20}$ protons on target. Six events pass all selection criteria at the far detector. In a three-flavor neutrino oscillation scenario with $|\Delta m_{23}^2|=2.4\times10^{-3}$ eV$^2$, $\sin^2 2\theta_{23}=1$ and $\sin^2 2\theta_{13}=0$, the expected number of such events is 1.5$\pm$0.3(syst.). Under this hypothesis, the probability to observe six or more candidate events is 7$\times10^{-3}$, equivalent to 2.5$\sigma$ significance. At 90% C.L., the data are consistent with 0.03(0.04)$<\sin^2 2\theta_{13}<$ 0.28(0.34) for $\delta_{\rm CP}=0$ and a normal (inverted) hierarchy.

research product

First Muon-Neutrino Disappearance Study with an Off-Axis Beam

We report a measurement of muon-neutrino disappearance in the T2K experiment. The 295-km muon-neutrino beam from Tokai to Kamioka is the first implementation of the off-axis technique in a long-baseline neutrino oscillation experiment. With data corresponding to 1.43 × 10(20) protons on target, we observe 31 fully-contained single μ-like ring events in Super-Kamiokande, compared with an expectation of 104 ± 14(syst) events without neutrino oscillations. The best-fit point for two-flavor νμ → ντ oscillations is sin 2(2θ(23)) = 0.98 and |Δm(2)(32)| = 2.65 × 10(−3) eV2. The boundary of the 90% confidence region includes the points (sin2 (2θ(23)), |Δm(2)(32)|) = (1.0, 3.1 × 10(−3) eV2), (0.84, …

research product

Volume III. DUNE far detector technical coordination

The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the st…

research product

The T2K Experiment

The T2K experiment is a long-baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle {\theta}_{13} by observing {\nu}_e appearance in a {\nu}_{\mu} beam. It also aims to make a precision measurement of the known oscillation parameters, {\Delta}m^{2}_{23} and sin^{2} 2{\theta}_{23}, via {\nu}_{\mu} disappearance studies. Other goals of the experiment include various neutrino cross section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande)…

research product