0000000000200383
AUTHOR
Janice L. Thompson
Volume IV The DUNE far detector single-phase technology
This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. The DUNE collaboration also acknowledges the international, national, and regional funding agencies supporting the institutions who have contributed to completing this Technical Design Report.
First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform
The ProtoDUNE-SP detector was constructed and operated on the CERN Neutrino Platform. We thank the CERN management for providing the infrastructure for this experiment and gratefully acknowledge the support of the CERN EP, BE, TE, EN, IT and IPT Departments for NP04/ProtoDUNE-SP. This documentwas prepared by theDUNEcollaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MSMT, Czech Republi…
Neutrino interaction classification with a convolutional neural network in the DUNE far detector
The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino…
The Physical Activity and Nutritional INfluences in Ageing (PANINI) Toolkit: a standardized approach towards physical activity and nutritional assessment of older adults
Assessing multiple domains of health in older adults requires multidimensional and large datasets. Consensus on definitions, measurement protocols and outcome measures is a prerequisite. The Physical Activity and Nutritional INfluences In Ageing (PANINI) Toolkit aims to provide a standardized toolkit of best-practice measures for assessing health domains of older adults with an emphasis on nutrition and physical activity. The toolkit was drafted by consensus of multidisciplinary and pan-European experts on ageing to standardize research initiatives in diverse populations within the PANINI consortium. Domains within the PANINI Toolkit include socio-demographics, general health, nutrition, ph…
Volume I. Introduction to DUNE
Journal of Instrumentation 15(08), T08008 (1-228) (2020). doi:10.1088/1748-0221/15/08/T08008
Physical Activity and Nutrition INfluences In ageing (PANINI): consortium mission statement
First paragraph: Current demographic trends indicate that by the year 2020, almost one in five of the European population will be aged 65 years or over. Although life expectancy is increasing by 2 years per decade, the period of life spent in good health is not keeping pace and most Europeans spend their last decade in poor health. Consequently, there is an urgent need to understand how lifestyle factors can influence age-related changes from gene to society level and how they may be integrated into a net effect of healthy ageing. It is also crucial to develop and validate interventions and health policies to ensure that more of our older adults have a healthy and active later life. This is…
Volume III. DUNE far detector technical coordination
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the st…