0000000000200841
AUTHOR
Loredana Gastaldo
Axion search with BabyIAXO in view of IAXO
Axions are a natural consequence of the Peccei-Quinn mechanism, the most compelling solution to the strong-CP problem. Similar axion-like particles (ALPs) also appear in a number of possible extensions of the Standard Model, notably in string theories. Both axions and ALPs are very well motivated candidates for Dark Matter, and in addition, they would be copiously produced at the sun's core. A relevant effort during the last decade has been the CAST experiment at CERN, the most sensitive axion helioscope to-date. The International Axion Observatory (IAXO) is a large-scale 4th generation helioscope. As its primary physics goal, IAXO will look for solar axions or ALPs with a signal to backgro…
Production, isolation and characterization of radiochemically pure 163Ho samples for the ECHo-project
Abstract Several experiments on the study of the electron neutrino mass are based on high-statistics measurements of the energy spectrum following electron capture of the radionuclide 163Ho. They rely on the availability of large, radiochemically pure samples of 163Ho. Here, we describe the production, separation, characterization, and sample production within the Electron Capture in Holmium-163 (ECHo) project. 163Ho has been produced by thermal neutron activation of enriched, prepurified 162Er targets in the high flux reactor of the Institut Laue-Langevin, Grenoble, France, in irradiations lasting up to 54 days. Irradiated targets were chemically processed by means of extraction chromatogr…
Measurement of the $^{229}$Th isomer energy with a magnetic micro-calorimeter
We present a measurement of the low-energy (0--60$\,$keV) $\gamma$ ray spectrum produced in the $\alpha$-decay of $^{233}$U using a dedicated cryogenic magnetic micro-calorimeter. The energy resolution of $\sim$$10\,$eV, together with exceptional gain linearity, allow us to measure the energy of the low-lying isomeric state in $^{229}$Th using four complementary evaluation schemes. The most accurate scheme determines the $^{229}$Th isomer energy to be $8.10(17)\,$eV, corresponding to 153.1(37)$\,$nm, superseding in precision previous values based on $\gamma$ spectroscopy, and agreeing with a recent measurement based on internal conversion electrons. We also measure branching ratios of the r…
Simulation and optimization of the implantation of holmium atoms into metallic magnetic microcalorimeters for neutrino mass determination experiments
Abstract Several novel experiments designed to investigate the electron neutrino mass in the sub-eV region are based on the calorimetric measurement of the 163Ho electron capture spectrum. For this the 163Ho source, with a required activity of the order of 1 to 100 Bq , needs to be enclosed in the detector, having a volume smaller than 10 − 3 mm 3 . Ion implantation is presently considered to be the most reliable method to enclose this source in the detector homogeneously distributed in a well defined volume. We have investigated the distribution of implanted holmium ions in different target materials and for different implantation energies by means of Monte Carlo simulations based on the S…
Direct Measurement of the Mass Difference ofHo163andDy163Solves theQ-Value Puzzle for the Neutrino Mass Determination
The atomic mass difference of (163)Ho and (163)Dy has been directly measured with the Penning-trap mass spectrometer SHIPTRAP applying the novel phase-imaging ion-cyclotron-resonance technique. Our measurement has solved the long-standing problem of large discrepancies in the Q value of the electron capture in (163)Ho determined by different techniques. Our measured mass difference shifts the current Q value of 2555(16) eV evaluated in the Atomic Mass Evaluation 2012 [G. Audi et al., Chin. Phys. C 36, 1157 (2012)] by more than 7σ to 2833(30(stat))(15(sys)) eV/c(2). With the new mass difference it will be possible, e.g., to reach in the first phase of the ECHo experiment a statistical sensit…
Measurement of the Th229 Isomer Energy with a Magnetic Microcalorimeter
We present a measurement of the low-energy (0-60 keV) γ-ray spectrum produced in the α decay of ^{233}U using a dedicated cryogenic magnetic microcalorimeter. The energy resolution of ∼10 eV, together with exceptional gain linearity, allows us to determine the energy of the low-lying isomeric state in ^{229}Th using four complementary evaluation schemes. The most precise scheme determines the ^{229}Th isomer energy to be 8.10(17) eV, corresponding to 153.1(32) nm, superseding in precision previous values based on γ spectroscopy, and agreeing with a recent measurement based on internal conversion electrons. We also measure branching ratios of the relevant excited states to be b_{29}=9.3(6)%…