0000000000200880

AUTHOR

Charles J. Hailey

showing 9 related works from this author

Axion search with BabyIAXO in view of IAXO

2020

Axions are a natural consequence of the Peccei-Quinn mechanism, the most compelling solution to the strong-CP problem. Similar axion-like particles (ALPs) also appear in a number of possible extensions of the Standard Model, notably in string theories. Both axions and ALPs are very well motivated candidates for Dark Matter, and in addition, they would be copiously produced at the sun's core. A relevant effort during the last decade has been the CAST experiment at CERN, the most sensitive axion helioscope to-date. The International Axion Observatory (IAXO) is a large-scale 4th generation helioscope. As its primary physics goal, IAXO will look for solar axions or ALPs with a signal to backgro…

Particle physicsPhysics - Instrumentation and Detectorssolar axion[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]experimental methodsDark matterFOS: Physical sciences7. Clean energyString (physics)Standard Modelaxion helioscopedesign [detector]International Axion Observatory (IAXO)ObservatoryPeccei-Quinn mechanismDark Matterdetector design[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental TechniquesAxionsun-tracking systemsphysics.ins-detactivity reportdetector: designPhysicsinstrumentationHelioscopeLarge Hadron Colliderdetectorsolar [axion]DESYInstrumentation and Detectors (physics.ins-det)[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]IAXOmagnetopticsaxion: solar
researchProduct

Conceptual design of the International Axion Observatory (IAXO)

2014

The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signal-to-noise ratio, IAXO will be about 4-5 orders of magnitude more sensitive than CAST, currently the most powerful axion helioscope, reaching sensitivity to axion-photon couplings down to a few $\times 10^{-12}$ GeV$^{-1}$ and thus probing a large fraction of the currently unexplored axion and ALP parameter space. IAXO will also be sensitive to solar axions produced by mechanisms mediated by the axion-electron coupling $g_{…

MICROPICPhysics - Instrumentation and DetectorsPhotonaxionsParameter space7. Clean energyHigh Energy Physics - ExperimentDark Matter detectors (WIMPs axions etc.)High Energy Physics - Experiment (hep-ex)Observatoryetc.)Micropattern gaseous detectors (MSGC GEM THGEM RETHGEM MHSP MICROPIC MICROMEGAS InGrid etc)Detectors and Experimental TechniquesInstrumentationMathematical PhysicsPhysicsGEMsolar [axion]Dark Matter Detectors (Wimps Axions etc.)MicroMegas detectorX-ray detectorsInstrumentation and Detectors (physics.ins-det)Dark Matter detectors (WIMPs axions etc.); Large detector systems for particle and astroparticle physics; Micropattern gaseous detectors (MSGC GEM THGEM RETHGEM MHSP MICROPIC MICROMEGAS InGrid etc); X-ray detectors; Instrumentation; Mathematical PhysicssolarobservatoryMICROMEGASMHSPaxion-like particlesproposed experimentaxions ; dark matter detectors ; x-ray detectors ; Micropattern gaseous detectors ; large detector systems for particle and astroparticle physicsMicromegasX-ray detectorParticle physicsoptics [X-ray]FOS: Physical sciencesSuperconducting magnetMicropattern gaseous detectors (MSGCddc:610Axionactivity reportDark Matter detectors (WIMPssuperconductivity [magnet]etc)HelioscopeLarge detector systems for particle and astroparticle physicssensitivityInGridRETHGEMOrders of magnitude (time)axionLarge detector systems for particle and astroparticle physicTHGEMMicropattern Gaseous Detectors (MSGC Gem THGEM Rethgem MHSP Micropic Micromegas In Grid; etc)
researchProduct

Accelerator testing of the general antiparticle spectrometer; a novel approach to indirect dark matter detection

2005

We report on recent accelerator testing of a prototype general antiparticle spectrometer (GAPS). GAPS is a novel approach for indirect dark matter searches that exploits the antideuterons produced in neutralino-neutralino annihilations. GAPS captures these antideuterons into a target with the subsequent formation of exotic atoms. These exotic atoms decay with the emission of X-rays of precisely defined energy and a correlated pion signature from nuclear annihilation. This signature uniquely characterizes the antideuterons. Preliminary analysis of data from a prototype GAPS in an antiproton beam at the KEK accelerator in Japan has confirmed the multi-X-ray/pion star topology and indicated X-…

PhysicsAntiparticleAnnihilationSpectrometerAstrophysics (astro-ph)Dark matterFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysicsPreliminary analysisNuclear physicsAntiproton beamPionHigh Energy Physics::ExperimentNuclear ExperimentExotic atomJournal of Cosmology and Astroparticle Physics
researchProduct

Discovery and Identification of MAXI J1621-501 as a Type I X-Ray Burster with a Super-orbital Period

2019

MAXI J1621-501 is the first Swift/XRT Deep Galactic Plane Survey transient that was followed up with a multitude of space missions (NuSTAR, Swift, Chandra, NICER, INTEGRAL, and MAXI) and ground-based observatories (Gemini, IRSF, and ATCA). The source was discovered with MAXI on 2017 October 19 as a new, unidentified transient. Further observations with NuSTAR revealed 2 Type I X-ray bursts, identifying MAXI J1621-501 as a Low Mass X-ray Binary (LMXB) with a neutron star primary. Overall, 24 Type I bursts were detected from the source during a 15 month period. At energies below 10 keV, the source spectrum was best fit with three components: an absorbed blackbody with kT = 2.3 keV, a cutoff p…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010504 meteorology & atmospheric sciencesX-ray bursterX-ray transient sourceAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsGalactic planeX-ray bursterLight curveOrbital period01 natural sciencesLow-mass X-ray binary starNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary Science0103 physical sciencesRadiative transferEmission spectrumLow MassAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysics0105 earth and related environmental sciencesAstrophysical Journal
researchProduct

The Next Generation of Axion Helioscopes: The International Axion Observatory (IAXO)

2015

Çetin, Serkant Ali (Dogus Author) -- Conference full title: 13th International Conference on Topics in Astroparticle and Underground Physics, TAUP 2013; Asilomar Conference Grounds Monterey Peninsula; United States; 8 September 2013 through 13 September 2013. The International Axion Observatory (IAXO) is a proposed 4th-generation axion helioscope with the primary physics research goal to search for solar axions via their Primakoff conversion into photons of 1 - 10 keV energies in a strong magnetic field. IAXO will achieve a sensitivity to the axion-photon coupling gaγ down to a few ×10-12 GeV-1 for a wide range of axion masses up to ∼ 0.25 eV. This is an improvement over the currently best …

QCD axionParticle physicsPhysics::Instrumentation and DetectorsDark matterPhysics and Astronomy(all)01 natural sciences7. Clean energymagnetic helioscopeHigh Energy Physics::TheoryQCD axionsAstroparticle PhysicsAxionObservatory0103 physical sciencesDark matterQCD axions; magnetic helioscope; dark matterDark Matterddc:530Detectors and Experimental Techniques010306 general physicsAxionAstroparticle physicsPhysicsHelioscope010308 nuclear & particles physicsAxion Dark Matter ExperimentHigh Energy Physics::PhenomenologyStrong CP problemIAXOStrong CP ProblemALPStrong CP problemAstroparticle physicsCERN Axion Solar TelescopeParticle Physics - ExperimentHelioscopesPhysics Procedia
researchProduct

Current status and future plans for the general antiparticle spectrometer (GAPS)

2008

著者人数: 13名

PhysicsAtmospheric ScienceParticle physicsAntiparticleSpectrometerAstrophysics::High Energy Astrophysical PhenomenaDark matterAerospace EngineeringAstronomy and AstrophysicsCosmic rayParticle acceleratorlaw.inventionNuclear physicsGeophysicsPionSpace and Planetary SciencelawGeneral Earth and Planetary SciencesCurrent (fluid)Nuclear ExperimentExotic atomAdvances in Space Research
researchProduct

The General Antiparticle Spectrometer (GAPS) - Hunt for dark matter using low energy antideuterons

2011

The GAPS experiment is foreseen to carry out a dark matter search using a novel detection approach to detect low-energy cosmic-ray antideuterons. The theoretically predicted antideuteron flux resulting from secondary interactions of primary cosmic rays with the interstellar medium is very low. So far not a single cosmic antideuteron has been detected by any experiment, but well-motivated theories beyond the standard model of particle physics, e.g., supersymmetry or universal extra dimensions, contain viable dark matter candidates, which could led to a significant enhancement of the antideuteron flux due to self-annihilation of the dark matter particles. This flux contribution is believed to…

Universal extra dimensionNuclear physicsInterstellar mediumPhysicsAntiparticleAnnihilationPhysics beyond the Standard ModelDark matterCosmic rayExotic atomProceedings of Identification of Dark Matter 2010 — PoS(IDM2010)
researchProduct

Indirect Dark Matter Search with Antideuterons: Progress and Future Prospects for General Antiparticle Spectrometer (GAPS)

2007

We report on recent accelerator testing of a prototype general antiparticle spectrometer (GAPS). GAPS is a novel approach for indirect dark matter searches that exploits the antideuterons produced in neutralino-neutralino annihilations. Many supersymmetry models, as well as other models based on extra dimensions, predict a primary antideuteron flux from dark matter annihilation that is much greater than the secondary and tertiary background sources at low energies. The GAPS method involves capturing antiparticles in a target material into excited energy states. The X-rays that are emitted as the antiparticle cascades to lower energy states before the exotic atom decays serve as a fingerprin…

PhysicsNuclear and High Energy PhysicsParticle physicsAntiparticleAnnihilationSpectrometerDark matterElementary particleAtomic and Molecular Physics and OpticsNuclear physicsExtra dimensionsAntimatterHigh Energy Physics::ExperimentExotic atomNuclear Physics B - Proceedings Supplements
researchProduct

Antideuterons as an indirect dark matter signature: design and preparation for a balloon-born GAPS experiment

2008

The General Antiparticle Spectrometer (GAPS) exploits low energy antideuterons produced in neutralino-neutralino annihilations as an indirect dark matter (DM) signature that is effectively free from background. When an antiparticle is captured by a target material, it forms an exotic atom in an excited state which quickly decays by emitting X-rays of precisely defined energy and a correlated pion signature from nuclear annihilation. We have successfully demonstrated the GAPS method in an accelerator environment and are currently planning a prototype flight from Japan for 2009. This will lead to a long duration balloon (LDB) mission that will complement existing and planned direct DM searche…

PhysicsHistoryAntiparticleAnnihilationSpectrometerDetectorDark matterTracking (particle physics)Computer Science ApplicationsEducationNuclear physicsHigh Energy Physics::ExperimentEnergy (signal processing)Exotic atomJournal of Physics: Conference Series
researchProduct