0000000000200916

AUTHOR

H. Herndl

rp-process nucleosynthesis at extreme temperature and density conditions

We present nuclear reaction network calculations to investigate the influence of nuclear structure on the rp-process between Ge and Sn in various scenarios. Due to the lack of experimental data for neutron-deficient nuclei in this region, we discuss currently available model predictions for nuclear masses and deformations as well as methods of calculating reaction rates (Hauser-Feshbach) and beta-decay rates (QRPA and shell model). In addition, we apply a valence nucleon (NpNn) correlation scheme for the prediction of masses and deformations. We also describe the calculations of 2p-capture reactions, which had not been considered before in this mass region. We find that in X-ray bursts 2p-c…

research product

The endpoint of the rp-process

Abstract The endpoint of rp-process nucleosynthesis in X-ray bursts determines the fuel consumption, the energy generation, and the abundance pattern of the produced nuclei. To investigate the time structure of rp-process nucleosynthesis, we used a nuclear reaction network including nuclei from H to Sn. We found that if 2p-capture reactions are included, the synthesis of nuclei heavier than Kr proceeds faster than previously thought. Therefore, in most X-ray bursts large amounts of nuclei in the A=80–100 region are expected to be produced. With an escape factor of about 1%, X-ray bursts could account for the large observed solar system abundances of the light p-nuclei like 92 Mo and 96 Ru t…

research product