0000000000201067
AUTHOR
Serghej L. Prischepa
Interface transparency and proximity effect in Nb/Cu triple layers realized by sputtering and molecular beam epitaxy
We have investigated, in the framework of the proximity effect theory, the interface transparency T between Nb and Cu in the case of high quality Nb/Cu trilayers fabricated by molecular beam epitaxy (MBE) and sputtering deposition techniques. The obtained T values do not seem to be strongly influenced by the fabrication methods but more by the intrinsic properties of the two metals; a slightly higher value for T has even been deduced for the MBE prepared samples. The proximity effect in these samples has also been studied in the presence of an external magnetic field. In the parallel configuration a significant shift towards lower values of the 2D–3D crossover temperature has been observed …
Correlation analysis of vibration modes in physical vapour deposited Bi 2 Se 3 thin films probed by the Raman mapping technique
In this work, the Raman spectroscopy mapping technique is used for the analysis of mechanical strain in Bi2Se3 thin films of various (3-400 nm) thicknesses synthesized by physical vapour deposition on amorphous quartz and single-layer graphene substrates. The evaluation of strain effects is based on the correlation analysis of in-plane (E2g) and out-of-plane (A21g) Raman mode positions. For Bi2Se3 films deposited on quartz, experimental datapoints are scattered along the line with a slope of similar to 0.85, related to the distribution of hydrostatic strain. In contrast to quartz/Bi2Se3 samples, for graphene/Bi2Se3 heterostructures with the same thicknesses, an additional negative slope of …
Quantum phase slips in superconducting Nb nanowire networks deposited on self-assembled Si templates
Robust porous silicon substrates were employed for generating interconnected networks of superconducting ultrathin Nb nanowires. Scanning electron microscopy analysis was performed to investigate the morphology of the samples, which constitute of polycrystalline single wires with grain size of about 10 nm. The samples exhibit nonzero resistance over a broad temperature range below the critical temperature, fingerprint of phase slippage processes. The transport data are satisfactory reproduced by models describing both thermal and quantum fluctuations of the superconducting order parameter in thin homogeneous superconducting wires.
Superconducting nanowire quantum interference device based on Nb ultrathin films deposited on self-assembled porous Si templates
Magnetoresistance oscillations were observed on networks of superconducting ultrathin Nb nanowires presenting evidences of either thermal or quantum activated phase slips. The magnetic transport data, discussed in the framework of different scenarios, reveal that the system behaves coherently in the temperature range where the contribution of the fluctuations is important.
Transport properties of Nb/PdNi bilayers
The transport properties of superconductor/weak ferromagnet Nb/Pd86Ni14 sputtered bilayers have been studied. The critical thickness needed for superconductivity to develop is determined from the dependence of the transition temperature T-c on d(Nb). (c) 2005 Elsevier Ltd. All rights reserved.
Interface Transparency of Nb/Pd Layered Systems
We have investigated, in the framework of proximity effect theory, the interface transparency T of superconducting/normal metal layered systems which consist of Nb and high paramagnetic Pd deposited by dc magnetron sputtering. The obtained T value is relatively high, as expected by theoretical arguments. This leads to a large value of the ratio $d_{s}^{cr}/ \xi_{s}$ although Pd does not exhibit any magnetic ordering.
Nonlinear current-voltage characteristics due to quantum tunneling of phase slips in superconducting Nb nanowire networks
We report on the transport properties of an array of N about 30 interconnected Nb nanowires, grown by sputtering on robust porous Si substrates. The analyzed system exhibits a broad resistive transition in zero magnetic field, H, and highly nonlinear V(I) characteristics as a function of H which can be both consistently described by quantum tunneling of phase slips.
Superconducting properties of Nb thin films deposited on porous silicon templates
Porous silicon, obtained by electrochemical etching, has been used as a substrate for the growth of nanoperforated Nb thin films. The films, deposited by UHV magnetron sputtering on the porous Si substrates, inherited their structure made of holes of 5 or 10 nm diameter and of 10 to 40 nm spacing, which provide an artificial pinning structure. The superconducting properties were investigated by transport measurements performed in the presence of magnetic field for different film thickness and substrates with different interpore spacing. Perpendicular upper critical fields measurements present peculiar features such as a change in the H_c2(T) curvature and oscillations in the field dependenc…