0000000000201145

AUTHOR

Stefan Torbrügge

Unravelling the atomic structure of cross-linked (1 × 2) TiO2(110).

The cross-linked (1 × 2) reconstruction of TiO(2)(110) is a frequently observed phase reflecting the surface structure of titania in a significantly reduced state. Here we resolve the atomic scale structure of the cross-linked (1 × 2) phase with dynamic scanning force microscopy operated in the non-contact mode (NC-AFM). From an analysis of the atomic-scale contrast patterns of the titanium and oxygen sub-structures obtained by imaging the surface with AFM tips having different tip apex termination, we infer the hitherto most accurate model of the atomic structure of the cross-linked (1 × 2) phase. Our findings suggest that the reconstruction is based on added rows in [001] direction built …

research product

Achieving high effectiveQ-factors in ultra-high vacuum dynamic force microscopy

The effective Q-factor of the cantilever is one of the most important figures-of-merit for a non-contact atomic force microscope (NC-AFM) operated in ultra-high vacuum (UHV). We provide a comprehensive discussion of all effects influencing the Q-factor and compare measured Q-factors to results from simulations based on the dimensions of the cantilevers. We introduce a methodology to investigate in detail how the effective Q-factor depends on the fixation technique of the cantilever. Fixation loss is identified as a most important contribution in addition to the hitherto discussed effects and we describe a strategy for avoiding fixation loss and obtaining high effective Q-factors in the forc…

research product