0000000000201224

AUTHOR

Soeren E. B. Nielsen

showing 2 related works from this author

Strictly correlated electrons approach to excitation energies of dissociating molecules

2019

In this work we consider a numerically solvable model of a two-electron diatomic molecule to study a recently proposed approximation based on the density functional theory of so-called strictly correlated electrons (SCE). We map out the full two-particle wave function for a wide range of bond distances and interaction strengths and obtain analytic results for the two-particle states and eigenenergies in various limits of strong and weak interactions, and in the limit of large bond distance. We then study the so-called Hartree-exchange-correlation (Hxc) kernel of time-dependent density functional theory which is a key ingredient in calculating excitation energies. We study an approximation b…

two-electron diatomic moleculeFOS: Physical sciencesElectron01 natural sciences010305 fluids & plasmasCondensed Matter - Strongly Correlated ElectronsQuantum mechanics0103 physical sciencesstrictly correlated electrons010306 general physicsWave functionAdiabatic processta116approximationdensity functional theoryPhysicsStrongly Correlated Electrons (cond-mat.str-el)ta114tiheysfunktionaaliteoriamolekyylitDiatomic moleculeBond lengthDensity functional theoryLocal-density approximationapproksimointiExcitation
researchProduct

Numerical construction of the density-potential mapping

2018

We demonstrate how a recently developed method Nielsen et al. [Nielsen et al., EPL 101, 33001 (2013)] allows for a comprehensive investigation of time-dependent density functionals in general, and of the exact time-dependent exchange-correlation potential in particular, by presenting the first exact results for two- and three-dimensional multi-electron systems. This method is an explicit realization of the Runge–Gross correspondence, which maps time-dependent densities to their respective potentials, and allows for the exact construction of desired density functionals. We present in detail the numerical requirements that makes this method efficient, stable and precise even for large and rap…

numeeriset menetelmätSolid-state physicstiheysfunktionaaliteoriadensity-potential mappingZero (complex analysis)Complex systemBoundary (topology)02 engineering and technologyState (functional analysis)021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic Materials0103 physical sciencesStatistical physicsBoundary value problem010306 general physics0210 nano-technologyCurrent densityRealization (systems)numerical constructionMathematicsThe European Physical Journal B
researchProduct