STOCHASTIC ANALYSIS OF ONE-DIMENSIONAL HETEROGENEOUS SOLIDS WITH LONG-RANGE INTERACTIONS
Random mass distribution in one-dimensional (1D) elastic solids in the presence of long-range interactions is studied in this paper. Besides the local Cauchy contact forces among adjacent elements, long-range forces depending on the product of interacting masses, as well as on their relative displacements, are considered. In this context, the random fluctuations of the mass distribution involve a stochastic model of the nonlocal interactions, and the random displacement field of the body is provided as the solution of a stochastic integro-differential equation. The presence of the random field of mass distribution is reflected in the random kernel of the solving integro-differential equatio…
One-dimensional heterogeneous solids with uncertain elastic modulus in presence of long-range interactions: Interval versus stochastic analysis
The analysis of one-dimensional non-local elastic solids with uncertain Young's modulus is addressed. Non-local effects are represented as long-range central body forces between non-adjacent volume elements. For comparison purpose, the fluctuating elastic modulus of the material is modeled following both a probabilistic and a non-probabilistic approach. To this aim, a novel definition of the interval field concept, able to limit the overestimation affecting ordinary interval analysis, is introduced. Approximate closed-form expressions are derived for the bounds of the interval displacement field as well as for the mean-value and variance of the stochastic response.
Approximate solution of the Fokker-Planck-Kolmogorov equation
The aim of this paper is to present a thorough investigation of approximate techniques for estimating the stationary and non-stationary probability density function (PDF) of the response of nonlinear systems subjected to (additive and/or multiplicative) Gaussian white noise excitations. Attention is focused on the general scheme of weighted residuals for the approximate solution of the Fokker-Planck-Kolmogorov (FPK) equation. It is shown that the main drawbacks of closure schemes, such as negative values of the PDF in some regions, may be overcome by rewriting the FPK equation in terms of log-probability density function (log-PDF). The criteria for selecting the set of weighting functions i…
Long-range interactions in 1D heterogeneous solids with uncertainty
Abstract In this paper, the authors aim to analyze the response of a one-dimensional non-local elastic solid with uncertain Young's modulus. The non-local effects are represented as long-range central body forces between non-adjacent volume elements. Following a non-probabilistic approach, the fluctuating elastic modulus of the material is modeled as an interval field. The analysis is conducted resorting to a novel formulation that confines the overestimation effect involved in interval models. Approximate closed-form expressions are derived for the bounds of the interval displacement field.
On the vibrations of a mechanically based non-local beam model
The vibration problem of a Timoshenko non-local beam is addressed. The beam model involves assuming that the equilibrium of each volume element is attained due to contact forces and long-range body forces exerted, respectively, by adjacent and non-adjacent volume elements. The contact forces result in the classical Cauchy stress tensor while the long-range forces are taken as depending on the product of the interacting volume elements and on their relative displacement through a material-dependent distance-decaying function. To derive the motion equations and the related mechanical boundary conditions, the Hamilton's principle is applied The vibration problem of a Timoshenko non-local beam …
Monte Carlo simulation for the response analysis of long-span suspended cables under wind loads
This paper presents a time-domain approach for analyzing nonlinear random vibrations of long-span suspended cables under transversal wind. A consistent continuous model of the cable, fully accounting for geometrical nonlinearities inherent in cable behavior, is adopted. The effects of spatial correlation are properly included by modeling wind velocity fluctuation as a random function of time and of a single spatial variable ranging over cable span, namely as a one-variate bi-dimensional (1V-2D) random field. Within the context of a Galerkin`s discretization of the equations governing cable motion, a very efficient Monte Carlo-based technique for second-order analysis of the response is prop…
A new displacement-based framework for non-local Timoshenko beams
In this paper, a new theoretical framework is presented for modeling non-locality in shear deformable beams. The driving idea is to represent non-local effects as long-range volume forces and moments, exchanged by non-adjacent beam segments as a result of their relative motion described in terms of pure deformation modes of the beam. The use of these generalized measures of relative motion allows constructing an equivalent mechanical model of non-local effects. Specifically, long-range volume forces and moments are associated with three spring-like connections acting in parallel between couples of non-adjacent beam segments, and separately accounting for pure axial, pure bending and pure sh…
A mechanically based approach to non-local beam theories
A mechanically based non-local beam theory is proposed. The key idea is that the equilibrium of each beam volume element is attained due to contact forces and long-range body forces exerted, respectively, by adjacent and non-adjacent volume elements. The contact forces result in the classical Cauchy stress tensor while the long-range forces are modeled as depending on the product of the interacting volume elements, their relative displacement and a material-dependent distance-decaying function. To derive the beam equilibrium equations and the pertinent mechanical boundary conditions, the total elastic potential energy functional is used based on the Timoshenko beam theory. In this manner, t…
The mechanically based non-local elasticity: an overview of main results and future challenges
The mechanically based non-local elasticity has been used, recently, in wider and wider engineering applications involving small-size devices and/or materials with marked microstructures. The key feature of the model involves the presence of non-local effects as additional body forces acting on material masses and depending on their relative displacements. An overview of the main results of the theory is reported in this paper.
Nonstationary response envelope probability densities of nonlinear oscillators
The nonstationary random response of a class of lightly damped nonlinear oscillators subjected to Gaussian white noise is considered. An approximate analytical method for determining the response envelope statistics is presented. Within the framework of stochastic averaging, the procedure relies on the Markovian modeling of the response envelope process through the definition of an equivalent linear system with response-dependent parameters. An approximate solution of the associated Fokker-Planck equation is derived by resorting to a Galerkin scheme. Specifically, the nonstationary probability density function of the response envelope is expressed as the sum of a time-dependent Rayleigh dis…