0000000000201690

AUTHOR

Régine Perzynski

The cage elasticity and under-field structure of concentrated magnetic colloids probed by small angle X-ray scattering

International audience; In the present study we probe the bulk modulus and the structure of concentrated magnetic fluids by small angle X-ray scattering. The electrostatically stabilized nanoparticles experience a repulsive interparticle potential modulated by dipolar magnetic interactions. On the interparticle distance length scale, we show that nanoparticles are trapped under-field in oblate cages formed by their first neighbours. We propose a theoretical model of magnetostriction for the field-induced deformation of the cage. This model captures the anisotropic features of the experimentally observed scattering pattern on the local scale in these strongly interacting colloidal dispersions

research product

Magnetic field driven micro-convection in the Hele-Shaw cell: the Brinkman model and its comparison with experiment

International audience; The micro-convection caused by the ponderomotive forces of the self-magnetic field in a magnetic fluid is studied here both numerically and experimentally. The theoretical approach based on the general Brinkman model substantially improves the description with respect to the previously proposed Darcy model. The predictions of both models are here compared to finely controlled experiments. The Brinkman model, in contrast to the Darcy model, allows us to describe the formation of mushrooms on the plumes of the micro-convective flow and the width of the fingers. In the Brinkman approach, excellent quantitative agreement is also obtained for the finger velocity dynamics …

research product

Magnetically enhancing the Seebeck coefficient in ferrofluids.

The influence of the magnetic field on the Seebeck coefficient (Se) was investigated in dilute magnetic nanofluids (ferrofluids) composed of maghemite magnetic nanoparticles dispersed in dimethyl-sulfoxide (DMSO). A 25% increase in the Se value was found when the external magnetic field was applied perpendicularly to the temperature gradient, reminiscent of an increase in the Soret coefficient (ST, concentration gradient) observed in the same fluids. In-depth analysis of experimental data, however, revealed that different mechanisms are responsible for the observed magneto-thermoelectric and -thermodiffusive phenomena. Possible physical and physico-chemical origins leading to the enhancemen…

research product

Dynamics of paramagnetic nanostructured rods under rotating field

International audience; The dynamical rotational behavior of magnetic nanostructured rods based on the auto-association of maghemite nanoparticles and block-copolymers is probed by optical microscopy under rotating fields i n a s imple l iquid. The reorientation of the rods by a field rotated by 90° is first studied. The measured relaxation is characteristic of param-agnetic objects. Under a stationnary rotating field, a synchronous rotational regime is observed at low field frequency. Above a frequency threshold which scales as H^2 , the dynamics becomes asynchronous with back-and-forth rotations. These behaviors are well predicted by the presented model.

research product

Spontaneous order in ensembles of rotating magnetic droplets

Ensembles of elongated magnetic droplets in a rotating field are studied experimentally. In a given range of field strength and frequency the droplets form rotating structures with a triangular order - rotating crystals. A model is developed to describe ensembles of several droplets, taking into account the hydrodynamic interactions between the rotating droplets in the presence of a solid wall below the rotating ensemble. A good agreement with the experimentally observed periodic dynamics for an ensemble of four droplets is obtained. During the rotation, the tips of the elongated magnetic droplets approach close to one another. An expression is derived that gives the magnetic interaction be…

research product

Relaxation of the field-induced structural anisotropy in a rotating magnetic fluid

The relaxation of field-induced anisotropy in a magnetic fluid with dominant repulsion is theoretically modeled and experimentally measured by small angle neutron scattering on a sample rotating at angular velocity ω. The scattered pattern distortion scales as the Mason number Mn=ω·τq, τq being the q-dependent diffusion time of nanoparticles. The model accounts for the magnetophoretical drift in the non-homogeneous self-magnetic field of the assembly, continuously created by the thermal noise. The Mn-dependence of the pattern distortion is well described without any adjustable parameter.

research product

Thermodiffusion anisotropy under a magnetic field in ionic liquid-based ferrofluids

International audience; Ferrofluids based on maghemite nanoparticles (NPs), typically 10 nm in diameter, are dispersed in an ionic liquid (1-ethyl 3-methylimidazolium bistriflimide - EMIM-TFSI). The average interparticle interaction is found to be repulsive by small angle scattering of X-rays and of neutrons, with a second virial coefficient A2 = 7.3. A moderately concentrated sample at Φ = 5.95 vol% is probed by forced Rayleigh scattering under an applied magnetic field (up to H = 100 kA m-1) from room temperature up to T = 460 K. Irrespective of the values of H and T, the NPs in this study are always found to migrate towards the cold region. The in-field anisotropy of the mass diffusion c…

research product

Magnetic micro-droplet in rotating field: numerical simulation and comparison with experiment

Magnetic droplets obtained by induced phase separation in a magnetic colloid show a large variety of shapes when exposed to an external field. However, the description of shapes is often limited. Here we formulate an algorithm based on three dimensional boundary-integral equations for strongly magnetic droplets in a high-frequency rotating magnetic field, allowing us to find their figures of equilibrium in three dimensions. The algorithm is justified by a series of comparisons with known analytical results. We compare the calculated equilibrium shapes with experimental observations and find a good agreement. The main features of these observations are the oblate-prolate transition, the flat…

research product

Swarming of micron-sized hematite cubes in a rotating magnetic field -- Experiments

Energy input by under-field rotation of particles drives the systems to emergent non-equilibrium states. Here we investigate the suspension of rotating magnetic cubes. Micron-sized hematite cubes are synthesized and observed microscopically. When exposed to a rotating magnetic field, they form rotating swarms that interact with each other like liquid droplets. We describe the swarming behaviour and its limits and characterize swarm size and angular velocity dependence on magnetic field strength and frequency. A quantitative agreement with a theoretical model is found for the angular velocity of swarms as a function of field frequency. It is interesting to note that hematite particles with p…

research product

Magnetic particle mixing with magnetic micro-convection for microfluidics

International audience; In this paper we discuss the magnetic micro-convection phenomenon as a tool for mixing enhancement in microfluidics systems in cases when one of the mis-cible fluids is a magnetic particle colloid. A system of a water-based magnetic fluid and water is investigated experimentally under homogeneous magnetic field in a Hele-Shaw cell. Subsequent image analysis both qualitatively and quan-titatively reveals the high enhancement of mixing efficiency provided by this method. The mixing efficiency dependence on the magnetic field and the phys-ical limits is discussed. A suitable model for a continuous-flow microfluidics setup for mixing with magnetic micro-convection is als…

research product