0000000000202205
AUTHOR
H. H. Stroke
Measurement and microscopic description of odd-even staggering of charge radii of exotic copper isotopes
Isotopes with an odd number of neutrons are usually slightly smaller in size than their even-neutron neighbours. In charge radii of short-lived copper isotopes, a reduction of this effect is observed when the neutron number approaches fifty. The mesoscopic nature of the atomic nucleus gives rise to a wide array of macroscopic and microscopic phenomena. The size of the nucleus is a window into this duality: while the charge radii globally scale as $A^{1/3}$, their evolution across isotopic chains reveals unanticipated structural phenomena [1-3]. The most ubiquitous of these is perhaps the Odd-Even Staggering (OES) [4]: isotopes with an odd number of neutrons are usually smaller in size than …
Spin and Magnetic Moment ofMg33: Evidence for a Negative-Parity Intruder Ground State
We report on the first determination of the nuclear ground-state spin of $^{33}\mathrm{Mg}$, $I=3/2$, and its magnetic moment, $\ensuremath{\mu}=\ensuremath{-}0.7456(5)\text{ }{\ensuremath{\mu}}_{N}$, by combining laser spectroscopy with nuclear magnetic resonance techniques. These values are inconsistent with an earlier suggested 1 particle-1 hole configuration and provide evidence for a 2 particle-2 hole intruder ground state with negative parity. The results are in agreement with an odd-neutron occupation of the $3/2\text{ }[321]$ Nilsson orbital at a large prolate deformation. The discussion emphasizes the need of further theoretical and experimental investigation of the island of inver…
Nuclear Magnetic Moment ofTl207
The magnetic moment 1.876(5)${\mathrm{\ensuremath{\mu}}}_{\mathit{N}}$ of 4.77-min $^{207}\mathrm{Tl}$, the only heavy nucleus with a doubly magic core plus a single ${s}_{\frac{1}{2}}$ particle or hole, was measured from the hfs by collinear fast-beam laser spectroscopy at ISOLDE (isotope separator at the CERN synchrotron). The result is of theoretical importance as a test case for core polarization since the nuclear structure is relatively simple and the orbital part of the magnetic moment, including strong pion-exchange contribution, is expected to be zero.
Use of a Continuous Wave Laser and Pockels Cell for Sensitive High-Resolution Collinear Resonance Ionization Spectroscopy
New technical developments have led to a 2 orders of magnitude improvement of the resolution of the collinear resonance ionization spectroscopy (CRIS) experiment at ISOLDE, CERN, without sacrificing the high efficiency of the CRIS technique. Experimental linewidths of 20(1) MHz were obtained on radioactive beams of francium, allowing us for the first time to determine the electric quadrupole moment of the short lived [t1/2=22.0(5) ms]219Fr Qs=−1.21(2) eb, which would not have been possible without the advantages offered by the new method. This method relies on a continuous-wave laser and an external Pockels cell to produce narrow-band light pulses, required to reach the high resolution in t…
Collinear Resonance Ionization Spectroscopy of Neutron-Deficient Francium Isotopes
The magnetic moments and isotope shifts of the neutron-deficient francium isotopes 202-205Fr were measured at ISOLDE-CERN with use of collinear resonance ionization spectroscopy. A production-to-detection efficiency of 1% was measured for 202Fr. The background from nonresonant and collisional ionization was maintained below one ion in 105 beam particles. Through a comparison of the measured charge radii with predictions from the spherical droplet model, it is concluded that the ground-state wave function remains spherical down to 205Fr, with a departure observed in 203Fr (N = 116). ispartof: Physical Review Letters vol:111 issue:21 pages:212501-4 ispartof: location:United States status: pub…
Nuclear Magnetic Moments ofBi205,207,209Isotopes—Hyperfine Structure of the 15-dayBi2053067-Å Line
First observation of the blue optical lines of francium
We report here the first wave-length measurements in the second resonance doublet of francium, D1'(7s2S1/2-8p2P 1/2) and D2'(7s2S1/2-8p2P 3/2), carried out by collinear fast-beam laser spectroscopy. The transition wave numbers are D1' = 23112.9603(50) cm-1 and D2' = 23658.3058(40) cm-1, corresponding to a 8p fine-structure splitting of δW8p = 545.3454(70) cm-1. In addition the hyperfine structure in both lines and the isotope shift in the D2' line for the isotopes 212,213,220,221Fr have been measured. The results are discussed with special emphasis on the analysis of the atomic structure in the heaviest alkali element and compared with theoretical predictions, as well as the only earlier sp…
Nuclear charge radii of potassium isotopes beyond N=28
We report on the measurement of optical isotope shifts for 38, 39, 42, 44, 46–51 K relative to 47 K from which changes in the nuclear mean square charge radii across the N = 28 shell closure are deduced. The investigation was carried out by bunched-beam collinear laser spectroscopy at the CERN-ISOLDE radioactive ion-beam facility. Mean square charge radii are now known from 37K to 51K, covering all ν f7/2-shell as well as all νp3/2-shell nuclei. These measurements, in conjunction with those of Ca, Cr, Mn and Fe, provide a first insight into the Z dependence of the evolution of nuclear size above the shell closure at N = 28
Experimental determination of anIπ=2−ground state inCu72,74
This article reports on the ground-state spin and moments measured in $^{72,74}\mathrm{Cu}$ using collinear laser spectroscopy at the CERN On-Line Isotope Mass Separator (ISOLDE) facility. From the measured hyperfine coefficients, the nuclear observables $\ensuremath{\mu}$(${}^{72}\mathrm{Cu})=\ensuremath{-}1.3472(10){\ensuremath{\mu}}_{N}$, $\ensuremath{\mu}({}^{74}\mathrm{Cu})=\ensuremath{-}1.068(3){\ensuremath{\mu}}_{N}$, $Q({}^{72}\mathrm{Cu})=+8(2) {\mathrm{efm}}^{2}$, $Q({}^{74}\mathrm{Cu})=+26(3) {\mathrm{efm}}^{2}$, $I({}^{72}\mathrm{Cu})=2$, and $I({}^{74}\mathrm{Cu})=2$ have been determined. Through a comparison of the measured magnetic moments with different models, the negative …
Discovery of a long-lived low-lying isomeric state in Ga-80
Collinear laser spectroscopy was performed on the $^{80}\mathrm{Ga}$ isotope at ISOLDE, CERN. A low-lying isomeric state with a half-life much greater than $200$ ms was discovered. The nuclear spins and moments of the ground and isomeric states and the isomer shift are discussed. Probable spins and parities are assigned to both long-lived states (${3}^{\ensuremath{-}}$ and ${6}^{\ensuremath{-}}$) deduced from a comparison of the measured moments to shell-model calculations.
Nuclear spins, magnetic moments, and quadrupole moments of Cu isotopes fromN=28toN=46: Probes for core polarization effects
Measurements of the ground-state nuclear spins and magnetic and quadrupole moments of the copper isotopes from $^{61}\mathrm{Cu}$ up to $^{75}\mathrm{Cu}$ are reported. The experiments were performed at the CERN online isotope mass separator (ISOLDE) facility, using the technique of collinear laser spectroscopy. The trend in the magnetic moments between the $N=28$ and $N=50$ shell closures is reasonably reproduced by large-scale shell-model calculations starting from a $^{56}\mathrm{Ni}$ core. The quadrupole moments reveal a strong polarization of the underlying Ni core when the neutron shell is opened, which is, however, strongly reduced at $N=40$ due to the parity change between the $\mat…