0000000000202611

AUTHOR

Caroline Alby

Novel KIF7 mutations extend the phenotypic spectrum of acrocallosal syndrome.

Background Acrocallosal syndrome (ACLS) is a rare recessive disorder characterised by corpus callosum agenesis or hypoplasia, craniofacial dysmorphism, duplication of the hallux, postaxial polydactyly, and severe mental retardation. Recently, we identified mutations in KIF7, a key component of the Sonic hedgehog pathway, as being responsible for this syndrome. Methods We sequenced KIF7 in five suspected ACLS cases, one fetus and four patients, based on facial dysmorphism and brain anomalies. Results Seven mutations were identified at the KIF7 locus in these five cases, six of which are novel. We describe the first four compound heterozygous cases. In all patients, the diagnosis was suspecte…

research product

Genetic and phenotypic dissection of 1q43q44 microdeletion syndrome and neurodevelopmental phenotypes associated with mutations in ZBTB18 and HNRNPU

Subtelomeric 1q43q44 microdeletions cause a syndrome associating intellectual disability, microcephaly, seizures and anomalies of the corpus callosum. Despite several previous studies assessing genotype-phenotype correlations, the contribution of genes located in this region to the specific features of this syndrome remains uncertain. Among those, three genes, AKT3, HNRNPU and ZBTB18 are highly expressed in the brain and point mutations in these genes have been recently identified in children with neurodevelopmental phenotypes. In this study, we report the clinical and molecular data from 17 patients with 1q43q44 microdeletions, four with ZBTB18 mutations and seven with HNRNPU mutations, an…

research product

TALPID3/KIAA0586 regulates multiple aspects of neuromuscular patterning during gastrointestinal development in animal models and human

ABSTRACTTALPID3/KIAA0586 is an evolutionary conserved protein, which plays an essential role in protein trafficking. Its role during gastrointestinal (GI) and enteric nervous system (ENS) development has not been studied previously. Here, we analysed chicken, mouse and human embryonic GI tissues with TALPID3 mutations. The GI tract of TALPID3 chicken embryos was shortened and malformed. Histologically, the gut smooth muscle was mispatterned and enteric neural crest cells were scattered throughout the gut wall. Analysis of the Hedgehog pathway and gut extracellular matrix provided causative reasons for these defects. Interestingly, chicken intra-species grafting experiments and a conditional…

research product

TALPID3/KIAA0586 Regulates Multiple Aspects of Neuromuscular Patterning During Gastrointestinal Development in Animal Models and Human

TALPID3/KIAA0586 is an evolutionary conserved protein, which plays an essential role in protein trafficking. Its role during gastrointestinal (GI) and enteric nervous system (ENS) development has not been studied previously. Here, we analyzed chicken, mouse and human embryonic GI tissues with TALPID3 mutations. The GI tract of TALPID3 chicken embryos was shortened and malformed. Histologically, the gut smooth muscle was mispatterned and enteric neural crest cells were scattered throughout the gut wall. Analysis of the Hedgehog pathway and gut extracellular matrix provided causative reasons for these defects. Interestingly, chicken intra-species grafting experiments and a conditional knockou…

research product

TCTN3 Mutations Cause Mohr-Majewski Syndrome

Orofaciodigital syndromes (OFDSs) consist of a group of heterogeneous disorders characterized by abnormalities in the oral cavity, face, and digits and associated phenotypic abnormalities that lead to the delineation of 13 OFDS subtypes. Here, by a combined approach of homozygozity mapping and exome ciliary sequencing, we identified truncating TCTN3 mutations as the cause of an extreme form of OFD associated with bone dysplasia, tibial defect, cystic kidneys, and brain anomalies (OFD IV, Mohr-Majewski syndrome). Analysis of 184 individuals with various ciliopathies (OFD, Meckel, Joubert, and short rib polydactyly syndromes) led us to identify four additional truncating TCTN3 mutations in un…

research product

The oral-facial-digital syndrome gene C2CD3 encodes a positive regulator of centriole elongation

Centrioles are microtubule-based, barrel-shaped structures that initiate the assembly of centrosomes and cilia(1,2). How centriole length is precisely set remains elusive. The microcephaly protein CPAP (also known as MCPH6) promotes procentriole growth(3-5), whereas the oral-facial-digital (OFD) syndrome protein OFD1 represses centriole elongation(6,7). Here we uncover a new subtype of OFD with severe microcephaly and cerebral malformations and identify distinct mutations in two affected families in the evolutionarily conserved C2CD3 gene. Concordant with the clinical overlap, C2CD3 colocalizes with OFD1 at the distal end of centrioles, and C2CD3 physically associates with OFD1. However, wh…

research product

Mutations in KIAA0586 Cause Lethal Ciliopathies Ranging from a Hydrolethalus Phenotype to Short-Rib Polydactyly Syndrome

KIAA0586, the human ortholog of chicken TALPID3, is a centrosomal protein that is essential for primary ciliogenesis. Its disruption in animal models causes defects attributed to abnormal hedgehog signaling; these defects include polydactyly and abnormal dorsoventral patterning of the neural tube. Here, we report homozygous mutations of KIAA0586 in four families affected by lethal ciliopathies ranging from a hydrolethalus phenotype to short-rib polydactyly. We show defective ciliogenesis, as well as abnormal response to SHH-signaling activation in cells derived from affected individuals, consistent with a role of KIAA0586 in primary cilia biogenesis. Whereas centriolar maturation seemed una…

research product