0000000000202652

AUTHOR

Gary Stone

Phylogenomics of species from four genera of New World monkeys by flow sorting and reciprocal chromosome painting

Abstract Background The taxonomic and phylogenetic relationships of New World monkeys (Platyrrhini) are difficult to distinguish on the basis of morphology and because diagnostic fossils are rare. Recently, molecular data have led to a radical revision of the traditional taxonomy and phylogeny of these primates. Here we examine new hypotheses of platyrrhine evolutionary relationships by reciprocal chromosome painting after chromosome flow sorting of species belonging to four genera of platyrrhines included in the Cebidae family: Callithrix argentata (silvered-marmoset), Cebuella pygmaea (pygmy marmoset), Callimico goeldii (Goeldi's marmoset) and Saimiri sciureus (squirrel monkey). This is t…

research product

Mapping genomic rearrangements in titi monkeys by chromosome flow sorting and multidirectional in-situ hybridization.

We developed chromosome painting probes for Callicebus pallescens from flow-sorted chromosomes and used multidirectional chromosome painting to investigate the genomic rearrangements in C. cupreus and C. pallescens. Multidirectional painting provides information about chromosomal homologies at the subchromosomal level and rearrangement break points, allowing chromosomes to be used as cladistic markers. Chromosome paints of C. pallescens were hybridized to human metaphases and 43 signals were detected. Then, both human and C. pallescens probes were hybridized to the chromosomes of another titi monkey, C. cupreus. The human chromosome paints detected 45 segments in the haploid karyotype of C.…

research product

Multidirectional chromosome painting reveals a remarkable syntenic homology between the greater galagos and the slow loris.

We report on the first reciprocal chromosome painting of lorisoids and humans. The chromosome painting showed a remarkable syntenic homology between Otolemur and Nycticebus. Eight derived syntenic associations of human segments are common to both Otolemur and Nycticebus, indicative of a considerable period of common evolution between the greater galago and the slow loris. Five additional Robertsonian translocations form the slow loris karyotype, while the remaining chromosomes are syntenically equivalent, although some differ in terms of centromere position and heterochromatin additions. Strikingly, the breakpoints of the human chromosomes found fragmented in these two species are apparentl…

research product