0000000000202762
AUTHOR
B. Pasquini
Generalized polarizabilities and electroexcitation of the nucleon
Generalized nucleon polarizabilities for virtual photons can be defined in terms of electroproduction cross sections as function of the 4-momentum transfer $Q^2$. In particular, the sum of the generalized electric and magnetic polarizabilities $\Sigma=\alpha+\beta$ and the spin polarizability $\gamma$ can be expressed by virtual photon absorption cross sections integrated over the excitation energy. These quantities have been calculated within the framework of the recently developed unitary isobar model for pion photo- and electroproduction on the proton, which describes the available experimental data up to an excitation energy of about 1 GeV. Our results have been compared to the predicti…
Light-Front Interpretation of Proton Generalized Polarizabilities
We extend the recently developed formalism to extract light-front quark charge densities from nucleon form factor data to the deformations of these quark charge densities when applying an external electric field. We show that the resulting induced polarizations can be extracted from proton generalized polarizabilities. The available data for the generalized electric polarizabilitiy of the proton yield a pronounced structure in its induced polarization at large transverse distances, which will be pinned down by forthcoming high precision virtual Compton scattering experiments.
Higher Order Polarizabilities of the Proton
Compton scattering results are used to probe proton structure via measurement of higher order polarizabilities. Values for $\alpha_{E2}^p,\beta_{E2}^p,\alpha_{E\nu}^p,$ $\beta_{E\nu}^p$ determined via dispersion relations are compared to predictions based upon chiral symmetry and from the constituent quark model. Extensions to spin-polarizabilities are also discussed.
Dispersion theoretical analysis of the nucleon spin polarizabilities
The spin polarizabilities of the nucleon have been calculated from pion photoproduction data using forward dispersion relations. The feasibility of an experimental determination of these structure constants is discussed by focusing on polarization observables of the reaction \( \vec{\gamma }\vec{p} \to \gamma p \)→ γ p.
Proton spin polarizabilities from polarized Compton scattering
Polarized Compton scattering off the proton is studied within the framework of subtracted dispersion relations for photon energies up to 300 MeV. As a guideline for forthcoming experiments, we focus the attention on the role of the proton's spin polarizabilities and investigate the most favorable conditions to extract them with a minimum of model dependence. We conclude that a complete separation of the four spin polarizabilities is possible, at photon energies between threshold and the $\Delta(1232)$ region, provided one can achieve polarization measurements with an accuracy of a few percent.
MODELING THE TRANSVERSE MOMENTUM DEPENDENT PARTON DISTRIBUTIONS
We review quark model calculations of the transverse momentum dependent parton distributions (TMDs). For the T-even TMDs, we discuss the physical origin of model relations which hold in a large class of quark models. For the T-odd TMDs we review results in a light-cone constituent quark model (CQM) with the final state interaction effects generated via single-gluon exchange mechanism. As phenomenological application, we show the good agreement between results in the light-cone CQM and available experimental data for the Collins asymmetry.
On the Origin of Model Relations among Transverse-Momentum Dependent Parton Distributions
Transverse-momentum dependent parton distributions (TMDs) are studied in the framework of quark models. In particular, quark-model relations among TMDs are reviewed, elucidating their physical origin in terms of the quark-spin structure in the nucleon. The formal aspects of the derivation of these relations are complemented with explicit examples, emphasizing how and to which extent the conditions which lead to relations among TMDs are implemented in different classes of quark models.
Generalized polarizabilities of the proton in a constituent quark model revisited
We study low-energy virtual Compton scattering off the proton within the framework of a nonrelativistic constituent quark model. The Compton tensor is divided into two separately gauge-invariant contributions. The first consists of the groundstate propagation in the direct and crossed channels together with an appropriately chosen term to satisfy gauge invariance. The residual part contains the relevant structure information characterized by the so-called generalized polarizabilities. We discuss two different schemes to obtain the generalized polarizabilities from the residual term. Explicit predictions for the generalized polarizabilities are presented for the Isgur-Karl model. Our results…
Dispersion relations in real and virtual Compton scattering
A unified presentation is given on the use of dispersion relations in the real and virtual Compton scattering processes off the nucleon. The way in which dispersion relations for Compton scattering amplitudes establish connections between low energy nucleon structure quantities, such as polarizabilities or anomalous magnetic moments, and the nucleon excitation spectrum is reviewed. We discuss various sum rules for forward real and virtual Compton scattering, such as the Gerasimov-Drell-Hearn sum rule and its generalizations, the Burkhardt-Cottingham sum rule, as well as sum rules for forward nucleon polarizabilities, and review their experimental status. Subsequently, we address the general…
Dispersion relation formalism for virtual Compton scattering and the generalized polarizabilities of the nucleon
A dispersion relation formalism for the virtual Compton scattering (VCS) reaction on the proton is presented, which for the first time allows a dispersive evaluation of 4 generalized polarizabilities at a four-momentum transfer $Q^2 \leq$ 0.5 GeV$^2$. The dispersive integrals are calculated using a state-of-the-art pion photo- and electroproduction analysis. The dispersion formalism provides a new tool to analyze VCS experiments above pion threshold, thus increasing the sensitivity to the generalized polarizabilities of the nucleon.
The polarizability of the pion: no conflict between dispersion theory and chiral perturbation theory
Recent attempts to determine the pion polarizability by dispersion relations yield values that disagree with the predictions of chiral perturbation theory. These dispersion relations are based on specific forms for the absorptive part of the Compton amplitudes. The analytic properties of these forms are examined, and the strong enhancement of intermediate-meson contributions is shown to be connected with spurious singularities. If the basic requirements of dispersion relations are taken into account, the results of dispersion theory and effective field theory are not inconsistent.
Transverse Beam Spin Asymmetries at Backward Angles in Elastic Electron-Proton and Quasielastic Electron-Deuteron Scattering
We have measured the beam-normal single-spin asymmetries in elastic scattering of transversely polarized electrons from the proton, and performed the first measurement in quasi-elastic scattering on the deuteron, at backward angles (lab scattering angle of 108 degrees) for Q2 = 0.22 GeV^2/c^2 and 0.63 GeV^2/c^2 at beam energies of 362 MeV and 687 MeV, respectively. The asymmetry arises due to the imaginary part of the interference of the two-photon exchange amplitude with that of single photon exchange. Results for the proton are consistent with a model calculation which includes inelastic intermediate hadronic (piN) states. An estimate of the beam-normal single-spin asymmetry for the scatt…
Reply to “Comment on ‘Polarizability of the pion: No conflict between dispersion theory and chiral perturbation theory’”
We show that the alleged discrepancies between chiral perturbation theory (ChPT) and dispersion theory, reported for the polarizability of the pion by Fil'kov and Kashevarov [Phys. Rev. C 72, 035211 (2005)], result from applying dispersion theory to nonanalytic functions.
Dispersion relation formalism for virtual Compton scattering of the proton
We present in detail a dispersion relation formalism for virtual Compton scattering (VCS) off the proton from threshold into the $\Delta(1232)$-resonance region. Such a formalism can be used as a tool to extract the generalized polarizabilities of the proton from both unpolarized and polarized VCS observables over a larger energy range. We present calculations for existing and forthcoming VCS experiments and demonstrate that the VCS observables in the energy region between pion production threshold and the $\Delta(1232)$-resonance show an enhanced sensitivity to the generalized polarizabilities.
Polarized structure functions of the nucleon in the resonance region
Abstract We present predictions for the spin structure functions of the proton in the framework of a unitary isobar model for one-pion photo- and electroproduction. Our results are compared with recent experimental data from SLAC. The first moments of the calculated structure functions fullfil the Gerasimov-Drell-Hearn and Burkhardt-Cottingham sum rules within an error of typically 5–10%.