0000000000202864
AUTHOR
Mirjam Brackhan
Generation and characterization of an ABCC1 humanized mouse model (HABCC1<sup>FLX/FLX</sup>) with knockout capability
ATP-binding cassette (ABC) transporters such as ABCB1 (P-glycoprotein), ABCC1 (MRP1), and ABCG2 (BCRP) are well known for their role in rendering cancer cells resistant to chemotherapy. Additionally, recent research provided evidence that, along with other ABC transporters (ABCA1 and ABCA7), they might be cornerstones to tackle neurodegenerative diseases. Overcoming chemoresistance in cancer, understanding drug-drug interactions, and developing efficient and specific drugs that alter ABC transporter function are hindered by a lack of in vivo research models, which are fully predictive for humans. Hence, the humanization of ABC transporters in mice has become a major focus in pharmaceutical …
A New Tool for the Analysis of the Effect of Intracerebrally Injected Anti-Amyloid-β Compounds
Background: A wide range of techniques has been developed over the past decades to characterize amyloid-β (Aβ) pathology in mice. Until now, no method has been established to quantify spatial changes in Aβ plaque deposition due to targeted delivery of substances using ALZET® pumps. Objective: Development of a methodology to quantify the local distribution of Aβ plaques after intracerebral infusion of compounds. Methods: We have developed a toolbox to quantify Aβ plaques in relation to intracerebral injection channels using Zeiss AxioVision® and Microsoft Excel® software. For the proof of concept, intracerebral stereotactic surgery was performed in 50-day-old APP-transgenic mice injected wit…
Fingolimod as a Treatment in Neurologic Disorders Beyond Multiple Sclerosis
Abstract Fingolimod is an approved treatment for relapsing–remitting multiple sclerosis (MS), and its properties in different pathways have raised interest in therapy research for other neurodegenerative diseases. Fingolimod is an agonist of sphingosine-1-phosphate (S1P) receptors. Its main pharmacologic effect is immunomodulation by lymphocyte homing, thereby reducing the numbers of T and B cells in circulation. Because of the ubiquitous expression of S1P receptors, other effects have also been described. Here, we review preclinical experiments evaluating the effects of treatment with fingolimod in neurodegenerative diseases other than MS, such as Alzheimer’s disease or epilepsy. Fingolimo…
Imaging P-Glycoprotein Induction at the Blood–Brain Barrier of a β-Amyloidosis Mouse Model with 11C-Metoclopramide PET
P-glycoprotein (ABC subfamily B member 1, ABCB1) plays an important role at the blood–brain barrier (BBB) in promoting clearance of neurotoxic β-amyloid (Aβ) peptides from the brain into the blood. ABCB1 expression and activity were found to be decreased in the brains of Alzheimer disease patients. Treatment with drugs that induce cerebral ABCB1 activity may be a promising approach to delay the build-up of Aβ deposits in the brain by enhancing clearance of Aβ peptides from the brain. The aim of this study was to investigate whether PET with the weak ABCB1 substrate radiotracer 11C-metoclopramide can measure ABCB1 induction at the BBB in a β-amyloidosis mouse model (APP/PS1-21 mice) and in w…
Strategies to gain novel Alzheimer’s disease diagnostics and therapeutics using modulators of ABCA transporters
Adenosine-triphosphate-(ATP)-binding cassette (ABC) transport proteins are ubiquitously present membrane-bound efflux pumps that distribute endo- and xenobiotics across intra- and intercellular barriers. Discovered over 40 years ago, ABC transporters have been identified as key players in various human diseases, such as multidrug-resistant cancer and atherosclerosis, but also neurodegenerative diseases, such as Alzheimer���s disease (AD). Most prominent and well-studied are ABCB1, ABCC1, and ABCG2, not only due to their contribution to the multidrug resistance (MDR) phenotype in cancer, but also due to their contribution to AD. However, our understanding of other ABC transporters is limited…