0000000000203658

AUTHOR

Maria Grazia Insinga

Ultrafast lead-acid battery with nanostructured Pb and PbO2 electrodes

Lead-acid batteries (LABs) are still extensively used in the field of energy storage, owing to a well-known and reliable technology. LABs can deliver high power and store energy for a very long time. In addition, they are reliable and easy to produce. The raw materials for their manufacture are practically unlimited, and about 95% of the materials can be recovered and reused. However, the lower specific energy storage (about 30-40 Wh kg-1), in comparison with other storage systems, limits their use in the most emerging and challenging applications, like electrical mobility, due to the high atomic weight of lead [1]. One of the principal limitations in the use of LABs in electric vehicles (E…

research product

High-Performance Lead-Acid Batteries Enabled by Pb and PbO2 Nanostructured Electrodes: Effect of Operating Temperature

Lead-acid batteries are now widely used for energy storage, as result of an established and reliable technology. In the last decade, several studies have been carried out to improve the performance of this type of batteries, with the main objective to replace the conventional plates with innovative electrodes with improved stability, increased capacity and a larger active surface. Such studies ultimately aim to improve the kinetics of electrochemical conversion reactions at the electrode-solution interface and to guarantee a good electrical continuity during the repeated charge/discharge cycles. To achieve these objectives, our contribution focuses on the employment of nanostructured electr…

research product

Nanostructured lead acid battery for electric vehicles applications

This paper presents an innovative lead acid battery, based on nanostructured active materials. Both charging time and specific energy are greatly enhanced in comparison with commercial lead acid battery. Starting from the extremely valuable performances of the nanostructured battery, also a circuital model, for application in electric vehicle traction, has been specifically developed. The circuital model has demonstrated that an enhanced nanostructured battery allows an increase of traveled distance by electric vehicles.

research product

Template electrodeposition and characterization of nanostructured Pb as a negative electrode for lead-acid battery

Abstract Despite Lead Acid Battery (LAB) is the oldest electrochemical energy storage system, diffusion in the emerging sectors of technological interest is inhibited by its drawbacks. The principal ones are low energy density and negative plate sulphating on high rate discharging. In this work, it is shown the possibility of overcoming such drawbacks by using nanostructured lead as a negative electrode. Lead nanowires (NWs) were fabricated by electrochemical deposition in template, which is an easy, cheap, and easily scalable process. Their morphology and crystal structure have been characterized by electron microscopy and X-ray diffraction, respectively. An electrochemical cell simulating…

research product

Performance of Lead-Acid Batteries with Nanostructured Electrodes at Different Temperature

In this work we present innovative lead-acid batteries with nanostructured electrodes, which are cycled in a wide range of temperatures typically of lead-acid commercial batteries (EN 61427-1: 2013). In comparison to parameters usually used to commercial batteries, much more stressful conditions in terms of cut-off, charge/discharge rate and discharge were imposed.

research product

Dispositivo elettrolizzatore migliorato

Un dispositivo di elettrolizzatore migliorato per la produzione elettrolitica di idrogeno allo stato gassoso

research product

LEAD-ACID BATTERIES WITH NANOSTRUCTURED ELECTRODES

research product

Metodo e Kit per il recupero di piombo metallico da componenti di un accumulatore esausto al piombo-acido

il metodo consente di ripristinare le piastre presenti nelle batterie al piombo acido esauste per recuperare il piombo presente e per riutilizzarle direttamente in nuove batterie

research product