0000000000204485
AUTHOR
David Irwin
Intravital Microscopy for Measuring Microcirculatory Blood Flow in Pulmonary Surface Metastases of Rats
Safety and Ergogenic Properties of Combined Aminophylline and Ambrisentan in Hypoxia.
We hypothesized that concomitant pharmacological inhibition of the endothelin and adenosine pathway is safe and improves exercise performance in hypoxic humans, via a mechanism that does not involve augmentation of blood oxygenation. To test this hypothesis, we established safety and drug interactions for aminophylline (500 mg) plus ambrisentan (5 mg) in normoxic volunteers. Subsequently, a placebo‐controlled study was employed to test the combination in healthy resting and exercising volunteers at simulated altitude (4,267 m). No serious adverse events occurred. Drug interaction was minimal or absent. Aminophylline alleviated hypoxia‐induced headaches. Aminophylline, ambrisentan, and their…
Safety of combined bambuterol and theophylline as a potential treatment of high altitude‐induced fatigue in humans
Automated Measurement of Microcirculatory Blood Flow Velocity in Pulmonary Metastases of Rats
Because the lung is a major target organ of metastatic disease, animal models to study the physiology of pulmonary metastases are of great importance. However, very few methods exist to date to investigate lung metastases in a dynamic fashion at the microcirculatory level, due to the difficulty to access the lung with a microscope. Here, an intravital microscopy method is presented to functionally image and quantify the microcirculation of superficial pulmonary metastases in rats, using a closed-chest pulmonary window and automated analysis of blood flow velocity and direction. The utility of this method is demonstrated to measure increases in blood flow velocity in response to pharmacologi…
Anti-Hypotensive Treatment and Endothelin Blockade Synergistically Antagonize Exercise Fatigue in Rats under Simulated High Altitude
Rapid ascent to high altitude causes illness and fatigue, and there is a demand for effective acute treatments to alleviate such effects. We hypothesized that increased oxygen delivery to the tissue using a combination of a hypertensive agent and an endothelin receptor A antagonist drugs would limit exercise-induced fatigue at simulated high altitude. Our data showed that the combination of 0.1 mg/kg ambrisentan with either 20 mg/kg ephedrine or 10 mg/kg methylphenidate significantly improved exercise duration in rats at simulated altitude of 4,267 m, whereas the individual compounds did not. In normoxic, anesthetized rats, ephedrine alone and in combination with ambrisentan increased heart…
The Effects of Sympathetic Inhibition on Metabolic and Cardiopulmonary Responses to Exercise in Hypoxic Conditions.
Objective Pre-exertion skeletal muscle glycogen content is an important physiological determinant of endurance exercise performance: low glycogen stores contribute to premature fatigue. In low-oxygen environments (hypoxia), the important contribution of carbohydrates to endurance performance is further enhanced as glucose and glycogen dependence is increased; however, the insulin sensitivity of healthy adult humans is decreased. In light of this insulin resistance, maintaining skeletal muscle glycogen in hypoxia becomes difficult, and subsequent endurance performance is impaired. Sympathetic inhibition promotes insulin sensitivity in hypoxia but may impair hypoxic exercise performance, in p…
Methazolamide Plus Aminophylline Abrogates Hypoxia-Mediated Endurance Exercise Impairment.
In hypoxia, endurance exercise performance is diminished; pharmacotherapy may abrogate this performance deficit. Based on positive outcomes in preclinical trials, we hypothesized that oral administration of methazolamide, a carbonic anhydrase inhibitor, aminophylline, a nonselective adenosine receptor antagonist and phosphodiesterase inhibitor, and/or methazolamide combined with aminophylline would attenuate hypoxia-mediated decrements in endurance exercise performance in humans. Fifteen healthy males (26 ± 5 years, body-mass index: 24.9 ± 1.6 kg/m(2); mean ± SD) were randomly assigned to one of four treatments: placebo (n = 9), methazolamide (250 mg; n = 10), aminophylline (400 mg; n = 9),…
The novel combination of theophylline and bambuterol as a potential treatment of hypoxemia in humans.
Hypoxemia can be life-threatening, both acutely and chronically. Because hypoxemia causes vascular dysregulation that further restricts oxygen availability to tissue, it can be pharmacologically addressed. We hypothesized that theophylline can be safely combined with the β2-adrenergic vasodilator bambuterol to improve oxygen availability in hypoxemic patients. Ergogenicity and hemodynamic effects of bambuterol and theophylline were measured in rats under hypobaric and normobaric hypoxia (12% O2). Feasibility in humans was assessed using randomized, double-blind testing of the influence of combined slow-release theophylline (300 mg) and bambuterol (20 mg) on adverse events (AEs), plasma K+,…
Pre-clinical assessment of a water-in-fluorocarbon emulsion for the treatment of pulmonary vascular diseases
Abstract Hypoxic pulmonary vasoconstriction (HPV) is a well-characterized vascular response to low oxygen pressures and is involved in life-threatening conditions such as high-altitude pulmonary edema (HAPE) and pulmonary arterial hypertension (PAH). While the efficacy of oral therapies can be affected by drug metabolism, or dose-limiting systemic toxicity, inhaled treatment via pressured metered dose inhalers (pMDI) may be an effective, nontoxic, practical alternative. We hypothesized that a stable water-in-perfluorooctyl bromide (PFOB) emulsion that provides solubility in common pMDI propellants, engineered for intrapulmonary delivery of pulmonary vasodilators, reverses HPV during acute h…