0000000000204648

AUTHOR

Torgeir B. Andersen

Thermomechanical modeling of slab eduction

[1] Plate eduction is a geodynamic process characterized by normal-sense coherent motion of previously subducted continental plate. This mechanism may occur after slab detachment has separated the negatively buoyant oceanic plate from the positively buoyant orogenic root. Eduction may therefore be partly responsible for exhumation of high pressure rocks and late orogenic extension. We used two-dimensional thermomechanical modeling to investigate the main features of the plate eduction model. The results show that eduction can lead to the quasi adiabatic decompression of the subducted crust (≈2 GPa) in a timespan of 5 My, large localized extensional strain in the former subduction channel, f…

research product

Widening of Hydrous Shear Zones During Incipient Eclogitization of Metastable Dry and Rigid Lower Crust—Holsnøy, Western Norway

The partially eclogitized crustal rocks on Holsnøy in the Bergen Arcs, Norway, indicate that eclogitization is caused by the interplay of brittle and ductile deformation promoted by fluid infiltration and fluid‐rock interaction. Eclogitization generated an interconnected network of millimeter‐to‐kilometer‐wide hydrous eclogite‐facies shear zones, which presumably caused transient weakening of the mechanically strong lower crust. To decipher the development of those networks, we combine detailed lithological and structural mapping of two key outcrops with numerical modeling. Both outcrops are largely composed of preserved granulite with minor eclogite‐facies shear zones, thus representing th…

research product