0000000000204655

AUTHOR

Yu F. Zhukovskii

Influence of F centres on structural and electronic properties of AlN single-walled nanotubes

We analyse the influence of uncharged N vacancies (neutral F centres), created either under conditions of AlN nanotube growth or by its soft irradiation, on the atomic and electronic structure. Periodic one-dimensional (1D) density functional theory (DFT) calculations on models of defective single-walled nanotubes (SW NTs) allow us to analyse how NT chirality and concentration of F centres change their properties compared to the corresponding defect-free nanotubes. We have simulated reconstruction around periodically repeated F centres on 1 nm AlN SW NTs with armchair- and zigzag-type chiralities. To achieve the limit of an isolated vacancy for both chiralities, we have considered different…

research product

Quantum chemical simulations of bound hold polarons (V Mg centers) in corundum crystals

The semi-empirical INDO method has been applied to the calculations of the bound hole small-radius polarons in corundum. Results for optimized atomic and electronic structure using two different approaches (molecular cluster and periodic, supercell model) are critically compared. Both models find that two-site configurations of bound hole polarons have the lowest energy (which does not exclude existence of one-site polarons also characterized by essential relaxation energies). Experimental ENDOR data on V Mg defects are discussed in the light of the calculations.

research product

Hybrid DFT calculations of theFcenters in cubic ABO3perovskites

We employed the hybrid DFT-LCAO approach as implemented in the CRYSTAL code for 135 atom supercell calculations of O vacancies with trapped electrons (known as the F centers) in three cubic perovskite crystals: SrTiO3, PbTiO3 and PbZrO3. The local lattice relaxation, charge redistribution and defect energy levels in the optical gap are compared. We demonstrate how difference in a chemical composition of host materials leads to quite different defect properties.

research product

DFT study of a singleF center in cubic SrTiO3 perovskite

Various properties of a cubic phase of SrTiO3 perovskite containing single F centers (neutral oxygen vacancies), including energies of their formation and migration, were simulated using different formalisms of density functional theory (DFT) as implemented into CRYSTAL-2003 and VASP computer codes. The lattice relaxation around the F center was found to be sensitive to both shape and size of supercells used. The larger the supercell, the closer the defect energy level in the bandgap lies to the conduction band bottom. It approaches the optical ionization energy of 0.49 eV for 270- and 320-atom supercells, where the distance between neighboring defects increases up to four lattice constants…

research product

Theoretical simulations of regular and defective aluminium nitride nanotubes

For theoretical simulation on AlN nanotubes (NTs) of different chiralities (armchair-and zigzag-type) and uniform diameters, we have considered their single-walled (SW) 1D periodic models. For this aim, we have performed ab initio DFT calculations on AlN SW NTs using formalism of the localized Gaussian-type atomic functions as implemented in CRYSTAL-03 computer code. We have shown that the smaller the diameter of AlN single-walled nanotube is, the closer its electronic and structural properties to AlN bulk. We have analysed an influence of N vacancies (neutral F centres) created by either soft irradiation of nanotubes or under experimental conditions of their growth, on the atomic and elect…

research product

Enhanced interfacial lithium storage in nanocomposites of transition metals with LiF and Li2O: Comparison of DFT calculations and experimental studies

Abstract Me/LiX nanocomposites (Me – transition metal and X = F or O) exhibit extra lithium storage, with pseudo-capacitive behavior and high-rate performance. While LiX surface layers or the interfacial core serves as hosts for extra Li, atoms of contacting transition metal serve as electron sinks, depending on Me electronegativity. To verify the mechanism, we have performed comparative DFT-LCAO calculations on the polar Ti|Li|Li2O(111) and non-polar Cu|Li|LiF(001) interfaces with extra Li atoms inserted inside both 2D interfaces, gradually changing their concentration. Theoretical calculations confirm validity of this interfacial model for explanation of the extra storage capacity at low …

research product

Atomic and electronic structure of perfect and defective PbZrO3 perovskite: Hybrid DFT calculations of cubic and orthorhombic phases

Abstract The structural and electronic properties of pure cubic and low-temperature orthorhombic PbZrO3 (antiferroelectric phase), as well as cubic PbZrO3 containing single F-centers (neutral oxygen vacancies) have been simulated by means of ab initio hybrid density functional calculations. We observed a substantial increase of the Pb–O bond covalency in ideal orthorhombic PbZrO3 with respect to its cubic phase. Relatively large displacement of four Pb atoms nearest to the F-center (0.25 A towards the defect) could affect the PbZrO3 ferroelectric properties. An O vacancy in the bulk PbZrO3 attracts ≈0.7 e, and the remaining electron density from the missing O2− is localized mostly on four n…

research product