0000000000204657

AUTHOR

C. Balasubramanian

Influence of F centres on structural and electronic properties of AlN single-walled nanotubes

We analyse the influence of uncharged N vacancies (neutral F centres), created either under conditions of AlN nanotube growth or by its soft irradiation, on the atomic and electronic structure. Periodic one-dimensional (1D) density functional theory (DFT) calculations on models of defective single-walled nanotubes (SW NTs) allow us to analyse how NT chirality and concentration of F centres change their properties compared to the corresponding defect-free nanotubes. We have simulated reconstruction around periodically repeated F centres on 1 nm AlN SW NTs with armchair- and zigzag-type chiralities. To achieve the limit of an isolated vacancy for both chiralities, we have considered different…

research product

Surfactant-assisted synthesis of Cd1−xCoxS nanocluster alloys and their structural, optical and magnetic properties

We report the synthesis of Co-doped CdS nanoclusters (Cd1−xCoxS) for different doping concentrations (x = 0.10, 0.20 and 0.30) and characterization of their structural, optical, and magnetic properties. The structural properties studied by X-ray diffraction revealed hexagonal-greenockite structure and a decrease of the lattice parameters (a and c) with doping, showing incorporation of Co in the lattice. The morphology of the nanoclusters was studied by scanning electron microscopy. The optical absorption studies, using diffused reflectance spectroscopy, revealed that Co doping modifies the absorption band edge. Ferromagnetic phase was observed in the magnetization measurements at room-tempe…

research product

Structural and electronic properties of single-walled AlN nanotubes of different chiralities and sizes

Four models of single-walled AlN nanotubes (NTs), which possess (i) two different chiralities (armchair or zigzag type) and (ii) two different uniform diameters for both types of NTs (1 or 6 nm) have been constructed, in order to analyse the dependence of their properties on both morphology and thickness. Periodic one-dimensional (1D) DFT calculations performed on these models have allowed us to analyse how the chirality and curvature of the NT change its properties as compared to both AlN bulk with either wurtzite or zinc-blende structures and their densely packed surfaces. We have found that the larger the diameter of the AlN NT, the smaller the width of its bandgap, the strengths of its …

research product

Luminescence, vibrational and XANES studies of AlN nanomaterials

Abstract The paper reports comparative studies on synthesized aluminium nitride nanotubes, nanoparticles and commercially available micron-sized AlN powder using different spectroscopic techniques: cathodoluminescence measurements (CL), X-ray absorption near edge spectroscopy (XANES) and Fourier-transform infrared spectroscopy (FTIR). Crucial distinctions in CL spectra are observed for nano- and microsized aluminium nitride powders; systematic shift of the IR absorption maximum has been detected for nanostructured aluminium nitride as compared to commercial samples. Through XANES experiments on Al K-edge structural differences between nano- and bulk AlN are revealed, intensity of features i…

research product

Theoretical simulations of regular and defective aluminium nitride nanotubes

For theoretical simulation on AlN nanotubes (NTs) of different chiralities (armchair-and zigzag-type) and uniform diameters, we have considered their single-walled (SW) 1D periodic models. For this aim, we have performed ab initio DFT calculations on AlN SW NTs using formalism of the localized Gaussian-type atomic functions as implemented in CRYSTAL-03 computer code. We have shown that the smaller the diameter of AlN single-walled nanotube is, the closer its electronic and structural properties to AlN bulk. We have analysed an influence of N vacancies (neutral F centres) created by either soft irradiation of nanotubes or under experimental conditions of their growth, on the atomic and elect…

research product

BiI3 nanoclusters in melt-grown CdI2 crystals studied by optical absorption spectroscopy

Optical absorption spectroscopy of CdI2–BiI3 layered crystals has been performed in the temperature range of 77–300 K. The main absorption, observed in these crystals at 2.59 eV is related to quantum confined exciton absorption of bimolecular BiI3 cluster. Low energy absorption peaks at 2.38 eV, 2.06 eV and 1.94 eV can be tentatively assigned to larger clusters composed of 4, 6 or more BiI3 molecules. In ultra-thin samples of CdI2–BiI3 several bands at 2.84 eV, 3.03 eV and 3.27 eV were observed which are ascribed to higher excited states of the excitons in bimolecular BiI3 cluster.

research product