0000000000204666
AUTHOR
Jeymy T. Sarmiento
Silica-Immobilized NHC-Gold(I) Complexes: Versatile Catalysts for the Functionalization of Alkynes under Batch and Continuous Flow Conditions
Immobilized sterically demanding NHC-Au(I) complexes silica-[(IPrR)Au]Cl and silica-[(IAdPrR)Au]Cl are synthesized and characterized. These complexes are suitable catalysts in typical homogeneous Au(I)-catalyzed alkyne reactions such as hydration, hydroamination, hydroarylation, or cycloisomerization. The results obtained with the immobilized catalysts in reactions in batch are comparable to those obtained with their homogeneous counterparts with the advantage of easily recovered and recycled in successive reactions. Their catalytic activity decreases when reused in batch reactions, probably because of crushing that is associated with magnetic stirring. In contrast, these immobilized cataly…
Favoring alkane primary carbon-hydrogen bond functionalization in supercritical carbon dioxide as reaction medium
The selectivity of a catalytic alkane functionalization process can be modified just changing the reaction medium from neat alkane to supercritical carbon dioxide (scCO2). A silica supported copper complex bearing an Nheterocyclic carbene ligand promotes the functionalization of carbon-hydrogen bonds of alkanes by transferring the CHCO2Et group from N2=CHCO2Et (ethyl diazoacetate, EDA). In neat hexane only 3% of the primary C-H bonds (ethyl heptanoate being the product) are functionalized in that manner, whereas the same reaction carried out in scCO2 provides a 30% yield in this linear ester. Such effect seems to be induced by an electronic density flux from the NHC ligand to the surroundin…