Effect of Mn doping on the low-temperature synthesis of tricalcium phosphate (TCP) polymorphs
Abstract Effect of Mn doping on the low-temperature synthesis of tricalcium phosphate (TCP) polymorphs was demonstrated in α- and β-TCP polymorphs prepared by wet precipitation method under identical conditions and annealed at 700 °C. Calcium phosphates with Mn doping level in the range from 1 to 5 mol% were studied and the formation of desired polymorph was controlled by varying Mn content in as-prepared precipitates. It was found that increasing Mn content resulted in the formation of β-TCP, while α-TCP was obtained with low Mn doping level, whereas a mixture of two polymorphs was obtained for intermediate Mn concentrations. Moreover, doping with Mn ions allowed the synthesis of β-TCP at …
Synthesis and luminescent properties of Mn-doped alpha-tricalcium phosphate
This project has received funding from European Social Fund (project No 09.3.3-LMT-K-712-19-0069) under grant agreement with the Research Council of Lithuania (LMTLT). Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART². The World Federation of Scientists is highly acknowledged for the National Scholarship to AZ. © 2021. This work is licensed under a CC BY-NC-ND 4.0 license.
Fe and Zn co-substituted beta-tricalcium phosphate (β-TCP): Synthesis, structural, magnetic, mechanical and biological properties
This work was supported by the European Social Fund under the No. 09.3.3- LMT-K-712 “Development of Competences of Scientists, other Researchers and Students through Practical Research Activities” measure. AK would like to express sincere gratitude for Fellowship administrated by The Japan Society for the Promotion of Science (JSPS). Fellow’s ID No.: L12546. Authors are grateful to R. Vargalis (Vilnius University) for taking SEM images. © 2020. This work is licensed under a CC BY-NC-ND license.
The influence of Fe3+ doping on thermally induced crystallization and phase evolution of amorphous calcium phosphate
The present study investigates thermally induced crystallization and phase evolution of amorphous calcium phosphate (ACP) partially substituted with Fe3+ ions (M/P = 1.5 : 1). It was demonstrated that the presence of Fe3+ ions radically changes the crystallization behavior of ACP and completely prevents the formation of α-tricalcium phosphate (α-TCP, Ca3(PO4)2), which is the first crystalline phase obtained from non-substituted ACP upon thermal treatment. Surprisingly, calcium deficient hydroxyapatite (CDHA) was obtained instead of α-TCP. Such unusual crystallization behavior was observed with a doping level as low as 0.1 mol% with respect to Ca ions. Moreover, it was shown that the presenc…