0000000000205118

AUTHOR

Jeongwoo Kim

0000-0002-4070-1878

showing 3 related works from this author

Understanding the Giant Enhancement of Exchange Interaction in Bi2Se3−EuS Heterostructures

2017

A recent experiment indicated that a ferromagnetic EuS film in contact with a topological insulator ${\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}$ might show a largely enhanced Curie temperature and perpendicular magnetic anisotropy [F. Katmis et al., Nature (London) 533, 513 (2016).]. Through systematic density functional calculations, we demonstrate that in addition to the factor that ${\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}$ has a strong spin orbit coupling, the topological surface states are crucial to make these unusual behaviors robust as they hybridize with EuS states and extend rather far into the magnetic layers. The magnetic moments of Eu atoms are nevertheless not much enhanced, unlike what was…

PhysicsCondensed matter physicsMagnetic momentExchange interactionGeneral Physics and AstronomyHeterojunction02 engineering and technologySpin–orbit interaction021001 nanoscience & nanotechnology01 natural sciencesFerromagnetismTopological insulator0103 physical sciencesCurie temperature010306 general physics0210 nano-technologySurface statesPhysical Review Letters
researchProduct

Unraveling materials Berry curvature and Chern numbers from real-time evolution of Bloch states

2019

Materials can be classified by the topological character of their electronic structure and, in this perspective, global attributes immune to local deformations have been discussed in terms of Berry curvature and Chern numbers. Except for instructional simple models, linear response theories have been ubiquitously employed in calculations of topological properties of real materials. Here we propose a completely different and versatile approach to get the topological characteristics of materials by calculating physical observables from the real-time evolving Bloch states: the cell-averaged current density reveals the anomalous velocities whose integration leads to the conductivity quantum. Re…

Berry curvatureFOS: Physical sciencesSpin Hall effectquantum spin Hall effect02 engineering and technologyElectronic structure01 natural sciencesQuantumSettore FIS/03 - Fisica Della MateriaTheoretical physicsQuantum spin Hall effectMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesTime-dependent density functional theory010306 general physicsSpin (physics)QuantumTopological insulatorPhysicstopological insulatorCondensed Matter - Materials ScienceMultidisciplinaryCondensed Matter - Mesoscale and Nanoscale PhysicsPhysicsTime evolutionMaterials Science (cond-mat.mtrl-sci)Observable021001 nanoscience & nanotechnologytime-dependent density functional theoryTopological insulatorPhysical SciencesBerry connection and curvature0210 nano-technology
researchProduct

Prediction of ferroelectricity-driven Berry curvature enabling charge- and spin-controllable photocurrent in tin telluride monolayers

2019

In symmetry-broken crystalline solids, pole structures of Berry curvature (BC) can emerge, and they have been utilized as a versatile tool for controlling transport properties. For example, the monopole component of the BC is induced by the time-reversal symmetry breaking, and the BC dipole arises from a lack of inversion symmetry, leading to the anomalous Hall and nonlinear Hall effects, respectively. Based on first-principles calculations, we show that the ferroelectricity in a tin telluride monolayer produces a unique BC distribution, which offers charge- and spin-controllable photocurrents. Even with the sizable band gap, the ferroelectrically driven BC dipole is comparable to those of …

0301 basic medicineMaterials scienceBand gapSciencePoint reflectionGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health scienceschemistry.chemical_compoundCondensed Matter::Materials ScienceNanoscience and technologyMonolayerMesoscale and Nanoscale Physics (cond-mat.mes-hall)Symmetry breakinglcsh:ScienceCondensed Matter - Materials ScienceMultidisciplinaryCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsPhysicsQMaterials Science (cond-mat.mtrl-sci)General Chemistry021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectFerroelectricityMaterials scienceTin tellurideDipole030104 developmental biologychemistrylcsh:QBerry connection and curvature0210 nano-technology
researchProduct