0000000000205236
AUTHOR
Marie-pierre Planche
Microstructural, mechanical and tribological properties of suspension plasma sprayed YSZ/h-BN composite coating
Abstract Brittleness, relative high friction coefficient and wear rate limit the applications of ceramic coatings as wear-resistant layers. However, because embedding additives with ceramic matrix has demonstrated to be an effective way to improve coating performances, different contents and size of h-BN were added into an YSZ suspension. Afterwards, the YSZ/h-BN composite coatings were manufactured by suspension plasma spray and their tribological analysis indicated that: i) the reduction of the friction coefficient and wear rate can be achieved by incorporating h-BN into YSZ coating. ii) finer h-BN particle is more helpful to enhance the tribological properties of the coating. iii) the op…
Effect of oxidation post treatments on TiO2 coating manufactured using reactive very low-pressure plasma spraying (R-VLPPS)
Abstract TiO2 coatings manufactured using reactive very low-pressure plasma spraying (R-VLPPS) were analyzed in different regions related to their position compared to the plasma flame. For that, a screen was used in order to hide an area of the substrate from the direct plasma flux. The coating morphology changed from quasi lamellar structure to highly vapor structure and coatings exhibited obvious modifications in terms of phases and mechanical properties. The effect of oxidation post treatment on the as sprayed coating was then studied by selecting two methods: in situ oxidation post treatment and classical thermal treatment. The two post treatments provided an increase of the main rutil…
Evaluation of nano/submicro pores in suspension plasma sprayed YSZ coatings
Abstract Nano-submicro pores could considerably influence the coating performances and thus should be properly designed for the intended applications. However, it is challenging to characterize accurately such small pores in coatings. In this study, YSZ coatings were firstly manufactured by suspension plasma spray (SPS) and the nano-submicro pores in as-prepared coatings were investigated using Ultra-small-angle X-ray scattering (USAXS). Afterwards, a multivariate analysis on the effect of five different process parameters was carried out. The two main results showed that: 1) the nano-submicro pores content in coatings has a negative correlation with suspension mass load and powder size, an…
Cold gas dynamic spray technology: A comprehensive review of processing conditions for various technological developments till to date
Abstract Today, cold gas dynamic spray (CGDS) technology has thrived with considerable capabilities for manufacturing various technological depositions. The deposition conditions have been developed through many years and that have led to produce ample experimental data which is available in the literature. But, recent research and development activities also reveal innovative findings regarding various deposition conditions. This paper contains a review of experimental deposition procedures for the cold spray additive manufacturing. Details of processing conditions are reported and classified into various categories of baseline working conditions, specific processing including deposition o…
Microstructure and electric properties of low-pressure plasma sprayed β-FeSi 2 based coatings
Abstract Thermoelectric material β-FeSi 2 based coating was fabricated by the technique low-pressure plasma spray (LPPS) on the Al 2 O 3 substrate from different alloy powders. During the process LPPS, the phase transformation had occurred through the peritectoid, eutectoid reaction and their inverse reaction. The grain size of the as-sprayed β-FeSi 2 doped Co coatings was reduced comparing with the original feedstock powders, which implied the thermal conductivity could effectively decreased by the LPPS process. The room temperature electrical conductivity showed metal and semiconductor properties on the as-sprayed and annealed coatings. This method and the results could solve the problems…
Porous architecture and thermal properties of thermal barrier coatings deposited by suspension plasma spray
Abstract Besides the intrinsic low heat transfer capability of material, the thermal insulation property of thermal barrier coatings (TBCs) also relies on their microstructures. For better understanding the relationship between process parameters, porous architecture, and thermal properties of coatings, YSZ coatings were firstly manufactured by suspension plasma spray (SPS). Afterwards their total porosities were characterized by using the technique of X-ray transmission, the nano/submicro pores in those coatings were detected with Ultra-Small Angle X-ray Scattering (USAXS), and the thermal properties of coatings were measured using the laser flash method. The results indicated that: i) the…
Numerical Reconstruction of Porous Architecture for Suspension Plasma Sprayed Coatings
Abstract The porous architecture of coatings has a significant influence on the coating performances and thus should be properly designed for the intended applications. For simulating the coating properties, it is necessary to determine the numerical representation of the coating microstructure. In this study, YSZ coatings were manufactured by suspension plasma spray (SPS). Afterwards, the porous architecture of as-prepared coatings was investigated by the combination of three techniques, imaging analysis, Ultra Small Angle X-ray Scattering (USAXS), and X-ray transmission. A microstructural model for reconstructing the porous architecture of the SPS coating was subsequently computed accordi…
Method for Identifying In-Flight Particles based on Digital Image Technologies in Thermal Spraying
Abstract In thermal spray processes, the characteristics of in-flight particles (velocity and temperature) have a significant effect on coating performance. Although many imaging systems and algorithms have been developed for identifying and tracking in-flight particles, most are limited in terms of accuracy. One key to solving the tracking problem is to get an algorithm that can distinguish different particles in each image frame. As the study showed, when noise and interference are treated, particles are more readily identified in the background, leading to more accurate size and position measurements with respect to time. This approach is demonstrated and the results discussed.