0000000000205408
AUTHOR
Antoine Gravot
NO-Based Signaling in Plants
In animals, nitric oxide (NO) is an endogenously produced radical involved in cell communication and signal transduction. Its functions in plants are currently being discovered at an unprecedented pace, and insight into NO-derived mechanisms has mainly been gained from research on signal transduction. Numerous studies have firmly placed NO as one component of the signal perception–transduction network that connects plant responses to primary signals, including hormones, elicitors of defence responses or abiotic stresses. Protein kinases and the second messengers Ca 2+, cGMP, and cADPR convey part of the NO signal within cells. Furthermore, NO-based protein modifications are emerging as broa…
Effet de la nutrition azotée et du génotype de la plante sur la résistance de Medicago truncatula à Aphanomyces euteiches
Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake.
Abstract Nitric oxide (NO) functions as a cell-signaling molecule in plants. In particular, a role for NO in the regulation of iron homeostasis and in the plant response to toxic metals has been proposed. Here, we investigated the synthesis and the role of NO in plants exposed to cadmium (Cd2+), a nonessential and toxic metal. We demonstrate that Cd2+ induces NO synthesis in roots and leaves of Arabidopsis (Arabidopsis thaliana) seedlings. This production, which is sensitive to NO synthase inhibitors, does not involve nitrate reductase and AtNOA1 but requires IRT1, encoding a major plasma membrane transporter for iron but also Cd2+. By analyzing the incidence of NO scavenging or inhibition …
Arabidopsis thaliana nicotianamine synthase 4 is required for proper response to iron deficiency and to cadmium exposure.
International audience; The nicotianamine synthase (NAS) enzymes catalyze the formation of nicotianamine (NA), a non-proteinogenic amino acid involved in iron homeostasis. We undertook the functional characterization of AtNAS4, the fourth member of the Arabidopsis thaliana NAS gene family. A mutant carrying a T-DNA insertion in AtNAS4 (atnas4), as well as lines overexpressing AtNAS4 both in the atnas4 and the wild-type genetic backgrounds, were used to decipher the role of AtNAS4 in NA synthesis, iron homeostasis and the plant response to iron deficiency or cadmium supply. We showed that AtNAS4 is an important source for NA. Whereas atnas4 had normal growth in iron-sufficient medium, it dis…
Arginase induction represses gall development during clubroot infection in Arabidopsis.
Arginase induction can play a defensive role through the reduction of arginine availability for phytophageous insects. Arginase activity is also induced during gall growth caused by Plasmodiophora brassicae infection in roots of Arabidopsis thaliana; however, its possible role in this context has been unclear. We report here that the mutation of the arginase-encoding gene ARGAH2 abrogates clubroot-induced arginase activity and results in enhanced gall size in infected roots, suggesting that arginase plays a defensive role. Induction of arginase activity in infected roots was impaired in the jar1 mutant, highlighting a link between the arginase response to clubroot and jasmonate signaling. C…