0000000000205426
AUTHOR
Jevgenijs Begens
First-principles calculations of point defects in inorganic nanotubes
The first-principles calculations have been performed to investigate the ground-state properties of monoperiodic boron nitride (BN), TiO2, and SrTiO3 single-walled nanotubes (SW NTs) containing extrinsic point defects. The hybrid exchange–correlation functionals PBE, B3LYP, and B3PW within the framework of density functional theory (DFT) have been applied for large-scale ab initio calculations on NTs with the following substitutional impurities: AlB, PN, GaB, AsN, InB, and SbN in the BN NT, as well as CO, NO, SO, and FeTi in the TiO2 and SrTiO3 NTs, respectively. The variations in formation energies obtained for equilibrium defective nanostructures allow us to predict the most stable compos…
C-, N-, S-, and Fe-Doped TiO2 and SrTiO3 Nanotubes for Visible-Light-Driven Photocatalytic Water Splitting: Prediction from First Principles
The ground state electronic structure and the formation energies of both TiO2 and SrTiO3 nanotubes (NTs) containing CO, NO, SO, and FeTi substitutional impurities are studied using first-principles calculations. We observe that N and S dopants in TiO2 NTs lead to an enhancement of their visible-light-driven photocatalytic response, thereby increasing their ability to split H2O molecules. The differences between the highest occupied and lowest unoccupied impurity levels inside the band gap (HOIL and LUIL, respectively) are reduced in these defective nanotubes down to 2.4 and 2.5 eV for N and S doping, respectively. The band gap of an NO+SO codoped titania nanotube is narrowed down to 2.2 eV …