0000000000205437

AUTHOR

Pedro Burguete

Pore Length Effect on Drug Uptake and Delivery by Mesoporous Silicas

The capability of UVM-7 silicas to work as supports for drug storage and delivery is investigated using ibuprofen as a model. UVM-7 silicas are surfactant-assisted synthesised mesoporous materials displaying a characteristic bimodal pore architecture related to their nanoparticulate texture. Strict control of the drug-charge protocol allows the achievement of high ibuprofen loads, not only because of the availability of intra-nanoparticle mesopores and large textural voids, but also owing to the decrease in pore-blocking effects (with regard to related unimodal mesoporous materials such as MCM-41) achieved through the shortening of the mesopore length. The UVM-7/ibuprofen nanocomposites are…

research product

Nanostructured Alumina from Freeze-Dried Precursors

Nanocrystalline alumina has been obtained on the 100 g scale by thermal decomposition of precursors resulting from the freeze-drying of aqueous solutions of different aluminum-containing products, namely aluminum acetate and aluminum L-lactate. Samples prepared at different temperatures (from 873 to 1573 K in steps of 100 K) were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and surface area measurements. In the acetate case, the transformation sequence involves the formation of θ-Al 2 O 3 as an intermediate phase between γ-Al 2 O 3 and α-Al 2 O 3 , whereas this θ phase is not observed in the lactate case. TEM…

research product

Layered-Expanded Mesostructured Silicas: Generalized Synthesis and Functionalization

Mesostructured layered silicas have been prepared through a surfactant-assisted procedure using neutral alkylamines as templates and starting from atrane complexes as hydrolytic inorganic precursors. By adjusting the synthetic parameters, this kinetically controlled reproducible one-pot method allows for obtaining both pure and functionalized (inorganic or organically) lamellar silica frameworks. These are easily deconstructed and built up again, which provides a simple way for expanding the interlamellar space. The materials present high dispersibility, which results in stable colloidal suspensions.

research product

Synthesis and processing of nanocrystalline tungsten carbide: Towards cemented carbides with optimal mechanical properties

Abstract Nanocrystalline tungsten carbide has been obtained by reduction/carburization at low temperature from precursors obtained by freeze-drying of aqueous solutions. Nanocrystalline WC powders with a adequate content of carbon were mixed with submicrometric Cobalt powder (12 wt.%), obtained by same synthesis method, and sintered in vacuum furnace. The cemented carbides fabricated from experimental powders were compared with both commercial ultrafine and nanocrystalline WC-12Co mixtures consolidated by the same route. The synthesised powders were characterized by X-ray powder diffraction, elemental analysis and scanning and high resolution transmission electron microscopy. On the other h…

research product

Supramolecular capping-ligand effect of lamellar silica mesostructures for the one-pot synthesis of highly dispersed ZnO nanoparticles

ZnO?SiO2 lamellar nanocomposites with high zinc content (5?Si/Zn?50) have been synthesized through a one-pot surfactant-assisted procedure from aqueous solution and starting from molecular atrane complexes of Zn and Si as inorganic hydrolytic precursors. This approach allows optimization of the dispersion of the ZnO nanodomains in the silica sheets. The nature of the layered silica materials has been confirmed by x-ray diffraction. Spectroscopic (ultraviolet?visible and photoluminescence) study of these layered silica materials shows that, regardless of the Si/Zn ratio, Zn atoms are organized in well-dispersed, uniform ZnO nanodomains (about 1.2?nm) partially embedded within the silica shee…

research product

Ordered mesoporous silicas as host for the incorporation and aggregation of octanuclear nickel(ii) single-molecule magnets: a bottom-up approach to new magnetic nanocomposite materials

Silica-based mesoporous materials have been employed as the support host for a suitably designed small octanuclear nickel(II) guest complex with a moderately anisotropic S = 4 ground spin state (D = −0.23 cm−1), which behaves as a single-molecule magnet at low temperature (TB = 3.0 K). Both unimodal MCM-41 and bimodal UVM-7 porous silica provide appropriate template conditions for the incorporation and aggregation of the Ni8 complex precursor into larger complex aggregates, showing slow relaxation of the magnetization at higher blocking temperatures than the crystalline material. By playing with the initial complex vs. silica concentration, two series of samples with varying complex loading…

research product