0000000000205462

AUTHOR

Juan José Pantrigo

0000-0002-7175-3371

Branch and bound for the cutwidth minimization problem

The cutwidth minimization problem consists of finding a linear arrangement of the vertices of a graph where the maximum number of cuts between the edges of the graph and a line separating consecutive vertices is minimized. We first review previous approaches for special classes of graphs, followed by lower bounds and then a linear integer formulation for the general problem. We then propose a branch-and-bound algorithm based on different lower bounds on the cutwidth of partial solutions. Additionally, we introduce a Greedy Randomized Adaptive Search Procedure (GRASP) heuristic to obtain good initial solutions. The combination of the branch-and-bound and GRASP methods results in optimal solu…

research product

Variable Neighborhood Search for the Vertex Separation Problem

The vertex separation problem belongs to a family of optimization problems in which the objective is to nd the best separator of vertices or edges in a generic graph. This optimization problem is strongly related to other well-known graph problems; such as the Path-Width, the Node Search Number or the Interval Thickness, among others. All of these optimization problems are NP-hard and have practical applications in VLSI, computer language compiler design or graph drawing. Up to know, they have been generally tackled with exact approaches, presenting polynomial-time algorithms to obtain the optimal solution for speci c types of graphs. However, in spite of their practical applications, these…

research product