0000000000205487
AUTHOR
Ninh Quang Nguyen
Optimizing droop coefficients for minimum cost operation of islanded micro-grids
This paper shows how minimum cost energy management can be carried out for islanded micro-grids considering an expanded state that also includes the system's frequency. Each of the configurations outputted by the energy management system at each hour are indeed technically sound and coherent from the point of view of generation-consumption balancing by exploiting a frequency dependent load flow algorithm. A Glow-worm Swarm Optimization (GSO) algorithm carried out in a 24 hour time frame provides optimized results. A test has been carried out for a residential PV-Storage-Microturbine islanded micro-grid to show the feasibility as well as the efficiency of the proposed approach and results ar…
Wave and Wind Energy Systems Integration in Vietnam: Analysis of Energy Potential and Economic Feasibility
Vietnam energy demand is currently growing at a very high annual rate, with the government being very interested in investments in renewable energies. Since the region with the highest solar and wind potential is far away from the big load centers, an investigation of offshore energy resources is here proposed. In this study, a review of previous energy potential assessments is provided. Moreover, the minimum feed-in-tariff to make the investments profitable is evaluated, showing that the current tariff for offshore wind plants is largely unattractive.
Forecasting energy output of a solar power plant in curtailment condition based on LSTM using P/GHI coefficient and validation in training process, a case study in Vietnam
This study presents how to improve the short-term forecast of photovoltaic plant's output power by applying the Long Short-Term Memory, LSTM, neural networks for industrial-scale solar power plants in Vietnam under possible curtailment operation. Since the actual output power does not correspond to the available power, new techniques (Global Horizontal Irradiance - GHI interval division, P/GHI factor addition (P - Power)) have been designed and applied for processing errors and missing data. The prediction model (LSTM network, structure of hidden layers, number of nodes) has been developed by the authors in a previous work. In this new version of the model, the training technique is improve…
Optimal power flow in islanded microgrids using a simple distributed algorithm
In this paper, the problem of distributed power losses minimization in islanded distribution systems is dealt with. The problem is formulated in a very simple manner and a solution is reached after a few iterations. The considered distribution system, a microgrid, will not need large bandwidth communication channels, since only closeby nodes will exchange information. The correction of generated active powers is possible by means of the active power losses partition concept that attributes a portion of the overall power losses in each branch to each generator. The experimental part shows the first results of the proposed method on an islanded microgrid. Simulation results of the distributed…
A new method for forecasting energy output of a large-scale solar power plant based on long short-term memory networks a case study in Vietnam
Abstract This paper proposes a new model for short-term forecasting power generation capacity of large-scale solar power plant (SPP) in Vietnam considering the fluctuations of weather factors when applying the Long Short-Term Memory networks (LSTM) algorithm. At first, a configuration of the model based on the LSTM algorithm is selected in accordance with the weather and operating conditions of SPP in Vietnam. Not only different structures of LSTM model but also other conventional forecasting methods for time series data are compared in terms of error accuracy of forecast on test data set to evaluate the effectiveness and select the most suitable LSTM configuration. The most suitable config…
A multi-agent system reinforcement learning based optimal power flow for islanded microgrids
In this paper, a distributed intelligence algorithm is used to manage the optimal power flow problem in islanded microgrids. The methodology provides a suboptimal solution although the error is limited to a few percent as compared to a centralized approach. The solution algorithm is multi-agent based. According to the method, couples of agents communicate with each other only if the buses where they are located are electrically connected. The overall prizing system required for learning uses a feedback from an approximated model of the network. Based on the latter, a distributed reiforcement learning algorithm is implemented to minimize the joule losses while meeting operational constraints…
Voltage Profile Improvement for Soc Son's Low-Voltage Grid with High Penetration of PV Systems by Optimizing the Location of SVC Devices
This paper presents a method that is applied to optimize the placement of Static VAR compensators in a real low-voltage grid in the Vietnamese territory. In this way, the voltage profile of the distribution grid turns to be improved. A heuristic method, the Binary Particle Swarm Optimization, is used to find a solution to this problem within the Matlab environment. A case study that considers a high penetration of rooftop PV systems in a branch of Soc Son distribution grid is implemented to show the efficiency of the optimization method for this specific application.
Critical Assessments of the Potential for Integrating Renewable Energy into Isolated Grids on Vietnamese Islands: The Case of the An-Binh Grid
Renewable electricity for off-grid areas is widely seen as one of the top choices in supporting local economic development in most countries, and so is Vietnam. Over the years, many isolated networks using renewable energy sources have been deployed for off-grid areas in Vietnam. However, the use of these energy sources in Vietnam’s isolated networks is still facing many challenges due to its infancy here. The issues of reliability and vulnerability of these networks are not given the expected attention. Another challenge is that the issues of the operational security of these systems could also be negatively affected by the variable nature of renewable sources, including static and dynamic…
Multi-Objective Optimization of Urban Microgrid Energy Supply According to Economic and Environmental Criteria
This study is focused on the optimization of the annual cost and greenhouse impact related to the supply of natural gas and electricity of an urban microgrid through the installation of components as renewable energy sources, energy storage units and converters. As input parameters of the optimization model, the energy demand of a medium density urban district was estimated, while average costs and emissions of equipment were collected in market reports and literature. The outputs of the model are the optimal size and the schedule of each component. Moreover, optimization analysis was carried out for two different scenarios, comparing Italian and Vietnamese energy system cost and environmen…
Sustainable Energy Supply in Vietnam
The steep growth of electricity demand in Vietnam (11% per year on average since 2006) calls for a deep rethinking of the Vietnamese electrical power system. Its topological structure indeed may not be well suited for a deep penetration of renewable energy sources and a predictable increase of reactive industrial loads. The Vietnamese power system is described and a few analytical methods are considered for its study both in steady state and in dynamic conditions in different scenarios. The power system simulation software Neplan is used for the implementation of the system’s model and the performing of the dynamic analysis.