0000000000205563

AUTHOR

David Lhuillier

Journal of High Energy Physics

The Double Chooz experiment presents improved measurements of the neutrino mixing angle $\theta_{13}$ using the data collected in 467.90 live days from a detector positioned at an average distance of 1050 m from two reactor cores at the Chooz nuclear power plant. Several novel techniques have been developed to achieve significant reductions of the backgrounds and systematic uncertainties with respect to previous publications, whereas the efficiency of the $\bar\nu_{e}$ signal has increased. The value of $\theta_{13}$ is measured to be $\sin^{2}2\theta_{13} = 0.090 ^{+0.032}_{-0.029}$ from a fit to the observed energy spectrum. Deviations from the reactor $\bar\nu_{e}$ prediction observed ab…

research product

Monte Carlo simulation of virtual Compton scattering below pion threshold

This paper describes the Monte Carlo simulation developed specifically for the VCS experiments below pion threshold that have been performed at MAMI and JLab. This simulation generates events according to the (Bethe-Heitler + Born) cross section behaviour and takes into account all relevant resolution-deteriorating effects. It determines the `effective' solid angle for the various experimental settings which are used for the precise determination of photon electroproduction absolute cross section.

research product

Precision Muon Reconstruction in Double Chooz

We describe a muon track reconstruction algorithm for the reactor anti-neutrino experiment Double Chooz. The Double Chooz detector consists of two optically isolated volumes of liquid scintillator viewed by PMTs, and an Outer Veto above these made of crossed scintillator strips. Muons are reconstructed by their Outer Veto hit positions along with timing information from the other two detector volumes. All muons are fit under the hypothesis that they are through-going and ultrarelativistic. If the energy depositions suggest that the muon may have stopped, the reconstruction fits also for this hypothesis and chooses between the two via the relative goodness-of-fit. In the ideal case of a thro…

research product

Muon capture on light isotopes measured with the Double Chooz detector

Using the Double Chooz detector, designed to measure the neutrino mixing angle $\theta_{13}$, the products of $\mu^-$ capture on $^{12}$C, $^{13}$C, $^{14}$N and $^{16}$O have been measured. Over a period of 489.5 days, $2.3\times10^6$ stopping cosmic $\mu^-$ have been collected, of which $1.8\times10^5$ captured on carbon, nitrogen, or oxygen nuclei in the inner detector scintillator or acrylic vessels. The resulting isotopes were tagged using prompt neutron emission (when applicable), the subsequent beta decays, and, in some cases, $\beta$-delayed neutrons. The most precise measurement of the rate of $^{12}\mathrm C(\mu^-,\nu)^{12}\mathrm B$ to date is reported: $6.57^{+0.11}_{-0.21}\time…

research product

QED radiative corrections to Virtual Compton Scattering

The QED radiative corrections to virtual Compton scattering (reaction $e p \to e p \gamma$) are calculated to first order in $\alpha_{em} \equiv e^2 / 4 \pi$. A detailed study is presented for the one-loop virtual corrections and for the first order soft-photon emission contributions. Furthermore, a full numerical calculation is given for the radiative tail, corresponding with photon emission processes, where the photon energy is not very small compared with the lepton momenta. We compare our results with existing works on elastic electron-proton scattering, and show for the $e p \to e p \gamma$ reaction how the observables are modified due to these first order QED radiative corrections. We…

research product