0000000000205656

AUTHOR

James R. Durrant

Supermolecular control of charge transfer in dye-sensitized nanocrystalline TiO2 films: towards a quantitative structure-function relationship.

research product

Optical sensing of cyanide using hybrid biomolecular films

The selective sensing of cyanide anions in water has been studied using a hybrid biomaterial composed of a mesoporous TiO2 film of crystalline nanoparticles and the protein hemoglobin. The mesoporous structure of the film prevents protein unfolding and also stabilizes the oxidized form of the prosthetic groups. Low-levels of cyanide anions (<0.2 ppm (0.2 mgr/L)) can be detected by monitoring the changes in the optical properties of the hybrid biomolecular films upon cyanide binding to the heme groups.

research product

Reversible Colorimetric Probes for Mercury Sensing

The selectivity and sensitivity of two colorimetric sensors based on the ruthenium complexes N719 [bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) bis(tetrabutylammonium) bis(thiocyanate)] and N749 [(2,2':6',2' '-terpyridine-4,4',4' '-tricarboxylate)ruthenium(II) tris(tetrabutylammonium) tris(isothiocyanate)] are described. It was found that mercury ions coordinate reversibly to the sulfur atom of the dyes' NCS groups. This interaction induces a color change in the dyes at submicromolar concentrations of mercury. Furthermore, the color change of these dyes is selective for mercury(II) when compared with other ions such as lead(II), cadmium(II), zinc(II), or iron(II). The detection limit…

research product

Tuning Charge Carrier Dynamics and Surface Passivation in Organolead Halide Perovskites with Capping Ligands and Metal Oxide Interfaces

Organolead halide perovskites have emerged as exciting optoelectronic materials but a complete understanding of their photophysical properties is still lacking. Here, a morphological series of methylammonium lead bromide (MAPbBr 3 ) perovskites are studied by transient optical spectroscopies over eight orders of magnitude in timescale to investigate the effect of nanostructuring and surface states on the charge carrier dynamics. The sample preparation route and corresponding morphology changes influence the position of the optical features, recombination dynamics, excitation fluence dependence, and dramatically impact surface trap passivation. Growth of the perovskite layer in the presence …

research product

State selective electron injection in non-aggregated titanium phthalocyanine sensitised nanocrystalline TiO2 films

We describe a novel titanium phthalocyanine that shows no aggregation when anchored to nanocrystalline TiO2 films through its axial carboxylated ligand without the use of co-adsorbents; state selective electron injection into the TiO2 is demonstrated, resulting in efficient photocurrent generation in dye sensitised photoelectrochemical solar cells. Palomares Gil, Emilio J, epagil@alumni.uv.es

research product

Solid film versus solution-phase charge-recombination dynamics of exTTF-bridge-C60 dyads.

The charge-recombination dynamics of two exTTF-C 6 0 dyads (exTTF=9,10-bis(l,3-dithiol-2-ylidene)-9,10-dihydroanthracene), observed after photoinduced charge separation, are compared in solution and in the solid state. The dyads differ only in the degree of conjugation of the bridge between the donor (exTTF) and the acceptor (C 6 0 ) moieties. In solution, photoexcitation of the nonconjugated dyad C 6 0 -BN-exTTF (1) (BN=1,1'-binaphthyl) shows slower charge-recombination dynamics compared with the conjugated dyad C 6 0 -TVB-exTTF (2) (TVB = bisthienylvinylenebenzene) (lifetimes of 24 and 0.6 μs, respectively), consistent with the expected stronger electronic coupling in the conjugated dyad.…

research product

Acid versus base peptization of mesoporous nanocrystalline TiO2 films: functional studies in dye sensitized solar cells

We report an analysis of the influence of acid/base conditions employed in the synthesis of TiO2 nanoparticles upon the performance of dye sensitised photoelectrochemical solar cells fabricated from these particles. The functional properties of the TiO2 nanoparticles in these devices are investigated by potential step chronoamperometry, transient laser spectroscopy, and photovoltaic device characterisation. We find that base peptization conditions employed in the sol–gel fabrication of the TiO2 nanoparticles result in a reduction in film electron density under negative applied bias, correlated with slower interfacial recombination losses and a higher device open circuit voltage.

research product

The origin of slow electron recombination processes in dye-sensitized solar cells with alumina barrier coatings

We investigate the effect of a thin alumina coating of nanocrystalline TiO2 films on recombination dynamics of dye-sensitized solar cells. Both coated and uncoated cells were measured by a combination of techniques: transient absorption spectroscopy, electrochemical impedance spectroscopy, and open-circuit voltage decay. It is found that the alumina barrier reduces the recombination of photoinjected electrons to both dye cations and the oxidized redox couple. It is proposed that this observed retardation can be attributed primarily to two effects: almost complete passivation of surface trap states in TiO2 that are able to inject electrons to acceptor species, and slowing down by a factor of…

research product

Data used in article 'Tuning Charge Carrier Dynamics and Surface Passivation in Organolead Halide Perovskites with Capping Ligands and Metal Oxide Interfaces'

Data underlying the article &#39;Tuning Charge Carrier Dynamics and Surface Passivation in Organolead Halide Perovskites with Capping Ligands and Metal Oxide Interfaces&#39; published in Advanced Optical Materials.

research product