0000000000205776

AUTHOR

Laetitia Lambert

showing 8 related works from this author

Phenotypic spectrum and genomics of undiagnosed arthrogryposis multiplex congenital

2022

BackgroundArthrogryposis multiplex congenita (AMC) is characterised by congenital joint contractures in two or more body areas. AMC exhibits wide phenotypic and genetic heterogeneity. Our goals were to improve the genetic diagnosis rates of AMC, to evaluate the added value of whole exome sequencing (WES) compared with targeted exome sequencing (TES) and to identify new genes in 315 unrelated undiagnosed AMC families.MethodsSeveral genomic approaches were used including genetic mapping of disease loci in multiplex or consanguineous families, TES then WES. Sanger sequencing was performed to identify or validate variants.ResultsWe achieved disease gene identification in 52.7% of AMC index pati…

musculoskeletal diseasesArtrogriposi múltiple congènitaSettore BIO/18 - GENETICAhuman geneticsneuromuscular diseasesGenomicsBiologyCONTRACTURESCLASSIFICATIONdiseasessymbols.namesakeDiagnòsticGene mappingarthrogryposis multiplex congenitaExome SequencingOF-FUNCTION MUTATIONSGeneticsMedicine and Health SciencesgenomicsHumansGenetics (clinical)Exome sequencingArthrogryposisSanger sequencingGeneticsArthrogryposis multiplex congenitaGenetic heterogeneitySPINAL MUSCULAR-ATROPHYProteinsnervous system malformationsDYSTROPHYDisease gene identificationGENEHuman geneticsPedigreeETIOLOGYPhenotypesymbolsneuromuscularGenèticaTranscription Factors
researchProduct

Diagnostic strategy in segmentation defect of the vertebrae: a retrospective study of 73 patients

2018

BackgroundSegmentation defects of the vertebrae (SDV) are non-specific features found in various syndromes. The molecular bases of SDV are not fully elucidated due to the wide range of phenotypes and classification issues. The genes involved are in the Notch signalling pathway, which is a key system in somitogenesis. Here we report on mutations identified in a diagnosis cohort of SDV. We focused on spondylocostal dysostosis (SCD) and the phenotype of these patients in order to establish a diagnostic strategy when confronted with SDV.Patients and methodsWe used DNA samples from a cohort of 73 patients and performed targeted sequencing of the five known SCD-causing genes (DLL3,MESP2,LFNG,HES7…

Male0301 basic medicineOncologymedicine.medical_specialtyCandidate geneAdolescent030105 genetics & heredityspondylocostal dysostosisdiagnostic strategysegmentation defect of the vertebraewhole exome sequencingLFNG03 medical and health sciencesgene panelInternal medicineExome SequencingBasic Helix-Loop-Helix Transcription FactorsGeneticsmedicineHumansFLNBChildGenetics (clinical)Exome sequencingBone Diseases Developmentalbusiness.industryIntracellular Signaling Peptides and ProteinsGlycosyltransferasesInfantMembrane ProteinsRetrospective cohort studymedicine.diseasePhenotypeSpineSpondylocostal dysostosisPedigreePhenotype[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsChild PreschoolMutationCohortFemaleT-Box Domain Proteinsbusiness
researchProduct

Rett‐like phenotypes: expanding the genetic heterogeneity to the KCNA2 gene and first familial case of CDKL5 ‐related disease

2016

Several genes have been implicated in Rett syndrome (RTT) in its typical and variant forms. We applied next-generation sequencing (NGS) to evaluate for mutations in known or new candidate genes in patients with variant forms of Rett or Rett-like phenotypes of unknown molecular aetiology. In the first step, we used NGS with a custom panel including MECP2, CDKL5, FOXG1, MEF2C and IQSEC2. In addition to a FOXG1 mutation in a patient with all core features of the congenital variant of RTT, we identified a missense (p.Ser240Thr) in CDKL5 in a patient who appeared to be seizure free. This missense was maternally inherited with opposite allele expression ratios in the proband and her mother. In th…

0301 basic medicineGeneticscongenital hereditary and neonatal diseases and abnormalitiesCandidate geneGenetic heterogeneityCDKL5Rett syndromeBiologymedicine.disease3. Good healthMECP203 medical and health sciences030104 developmental biology0302 clinical medicineGeneticsmedicineMissense mutationExome030217 neurology & neurosurgeryGenetics (clinical)Exome sequencingClinical Genetics
researchProduct

Genetic counselling difficulties and ethical implications of incidental findings from array-CGH: a 7-year national survey

2016

Microarray-based comparative genomic hybridization (aCGH) is commonly used in diagnosing patients with intellectual disability (ID) with or without congenital malformation. Because aCGH interrogates with the whole genome, there is a risk of being confronted with incidental findings (IF). In order to anticipate the ethical issues of IF with the generalization of new genome-wide analysis technologies, we questioned French clinicians and cytogeneticists about the situations they have faced regarding IF from aCGH. Sixty-five IF were reported. Forty corresponded to autosomal dominant diseases with incomplete penetrance, 7 to autosomal dominant diseases with complete penetrance, 14 to X-linked di…

0301 basic medicineGeneticsmedicine.medical_specialtyeducation.field_of_studyEthical issuesbusiness.industryGenetic counselingPopulationRetrospective cohort study030105 genetics & hereditymedicine.diseasePenetrance3. Good health03 medical and health sciencesGeneralization (learning)Family medicineIntellectual disabilityGeneticsMedicinebusinesseducationGenetics (clinical)Comparative genomic hybridizationClinical Genetics
researchProduct

The DYRK1A gene is a cause of syndromic intellectual disability with severe microcephaly and epilepsy.

2012

Background DYRK1A plays different functions during development, with an important role in controlling brain growth through neuronal proliferation and neurogenesis. It is expressed in a gene dosage dependent manner since dyrk1a haploinsufficiency induces a reduced brain size in mice, and DYRK1A overexpression is the candidate gene for intellectual disability (ID) and microcephaly in Down syndrome. We have identified a 69 kb deletion including the 5′ region of the DYRK1A gene in a patient with growth retardation, primary microcephaly, facial dysmorphism, seizures, ataxic gait, absent speech and ID. Because four patients previously reported with intragenic DYRK1A rearrangements or 21q22 microd…

MaleCandidate geneDown syndromeMicrocephalyAdolescentGenotypeBiologyProtein Serine-Threonine KinasesBioinformaticsFrameshift mutationEpilepsyAngelman syndromeIntellectual DisabilityGene OrderGeneticsmedicineHumansChildGenetics (clinical)GeneticsEpilepsyBase SequenceFaciesElectroencephalographySyndromeProtein-Tyrosine Kinasesmedicine.diseasePhenotypeChild PreschoolSpeech delayMutationMicrocephalyFemalemedicine.symptomHaploinsufficiencyJournal of medical genetics
researchProduct

WWOX-related encephalopathies: delineation of the phenotypical spectrum and emerging genotype-phenotype correlation

2014

International audience; BACKGROUND:Homozygous mutations in WWOX were reported in eight individuals of two families with autosomal recessive spinocerebellar ataxia type 12 and in two siblings with infantile epileptic encephalopathy (IEE), including one who deceased prior to DNA sampling.METHODS:By combining array comparative genomic hybridisation, targeted Sanger sequencing and next generation sequencing, we identified five further patients from four families with IEE due to biallelic alterations of WWOX.RESULTS:We identified eight deleterious WWOX alleles consisting in four deletions, a four base-pair frameshifting deletion, one missense and two nonsense mutations. Genotype-phenotype correl…

WWOXMicrocephaly[SDV]Life Sciences [q-bio]Nonsense mutationMutation MissenseBiology03 medical and health sciences0302 clinical medicineGeneticsmedicineHumansSpinocerebellar AtaxiasMissense mutationAlleleGenetics (clinical)infantile030304 developmental biologyGeneticsComparative Genomic Hybridization0303 health sciences[ SDV ] Life Sciences [q-bio]Tumor Suppressor ProteinsChromosomal fragile siteHigh-Throughput Nucleotide Sequencinggenotype/phenotype correlationsmedicine.diseaseNull allele3. Good healthPhenotypeWW Domain-Containing OxidoreductaseCodon Nonsenseintellectual disabilitySpinocerebellar ataxiaOxidoreductasesSpasms Infantilehigh throughput data mining030217 neurology & neurosurgeryJournal of Medical Genetics
researchProduct

Large national series of patients with Xq28 duplication involving MECP2: Delineation of brain MRI abnormalities in 30 affected patients.

2016

International audience; Xq28 duplications encompassing MECP2 have been described in male patients with a severe neurodevelopmental disorder associated with hypotonia and spasticity, severe learning disability, stereotyped movements, and recurrent pulmonary infections. We report on standardized brain magnetic resonance imaging (MRI) data of 30 affected patients carrying an Xq28 duplication involving MECP2 of various sizes (228 kb to 11.7 Mb). The aim of this study was to seek recurrent malformations and attempt to determine whether variations in imaging features could be explained by differences in the size of the duplications. We showed that 93% of patients had brain MRI abnormalities such …

0301 basic medicineMalePathologyMethyl-CpG-Binding Protein 2[SDV]Life Sciences [q-bio]030105 genetics & heredityCorpus callosumLateral ventricles0302 clinical medicineGene DuplicationIKBKGFLNAChildGenetics (clinical)GeneticsBrain Diseasesmedicine.diagnostic_testMiddle AgedPrognosisMagnetic Resonance ImagingHypotonia3. Good healthPedigree[SDV] Life Sciences [q-bio]medicine.anatomical_structurePhenotypeXq28 duplicationChild PreschoolFemalemedicine.symptomAdultmedicine.medical_specialtycongenital hereditary and neonatal diseases and abnormalitiesAdolescentGenotypeBiologygenotype-phenotype correlationWhite matter03 medical and health sciencesYoung AdultGeneticsmedicineHumansGenetic Association StudiesChromosomes Human X[ SDV ] Life Sciences [q-bio]Infant NewbornInfantMagnetic resonance imagingHyperintensitynervous system diseasesMental Retardation X-LinkedMECP2 gene030217 neurology & neurosurgeryAmerican journal of medical genetics. Part A
researchProduct

Reducing diagnostic turnaround times of exome sequencing for families requiring timely diagnoses

2017

IF 2.137; International audience; BACKGROUND AND OBJECTIVE:Whole-exome sequencing (WES) has now entered medical practice with powerful applications in the diagnosis of rare Mendelian disorders. Although the usefulness and cost-effectiveness of WES have been widely demonstrated, it is essential to reduce the diagnostic turnaround time to make WES a first-line procedure. Since 2011, the automation of laboratory procedures and advances in sequencing chemistry have made it possible to carry out diagnostic whole genome sequencing from the blood sample to molecular diagnosis of suspected genetic disorders within 50 h. Taking advantage of these advances, the main objective of the study was to impr…

0301 basic medicineAdultMaleExome sequencingmedicine.medical_specialtyTime FactorsAdolescentGenetic counselingBioinformaticsTurnaround timeSensitivity and SpecificityUndiagnosed genetic conditions03 medical and health sciencesGeneticsmedicineHumansExomeGenetic TestingMedical diagnosisIntensive care medicineChildExomeGenetics (clinical)Exome sequencingGenetic testingWhole genome sequencing[SDV.GEN]Life Sciences [q-bio]/Geneticsmedicine.diagnostic_testbusiness.industryInfant NewbornInfantGeneral MedicineSequence Analysis DNADiagnostic turnaround time3. Good healthClinical trial030104 developmental biologyEarly DiagnosisChild PreschoolFemalebusiness[ SDV.GEN ] Life Sciences [q-bio]/Genetics
researchProduct