0000000000205796

AUTHOR

Sophie Blesson

showing 10 related works from this author

Phenotypic spectrum and genomics of undiagnosed arthrogryposis multiplex congenital

2022

BackgroundArthrogryposis multiplex congenita (AMC) is characterised by congenital joint contractures in two or more body areas. AMC exhibits wide phenotypic and genetic heterogeneity. Our goals were to improve the genetic diagnosis rates of AMC, to evaluate the added value of whole exome sequencing (WES) compared with targeted exome sequencing (TES) and to identify new genes in 315 unrelated undiagnosed AMC families.MethodsSeveral genomic approaches were used including genetic mapping of disease loci in multiplex or consanguineous families, TES then WES. Sanger sequencing was performed to identify or validate variants.ResultsWe achieved disease gene identification in 52.7% of AMC index pati…

musculoskeletal diseasesArtrogriposi múltiple congènitaSettore BIO/18 - GENETICAhuman geneticsneuromuscular diseasesGenomicsBiologyCONTRACTURESCLASSIFICATIONdiseasessymbols.namesakeDiagnòsticGene mappingarthrogryposis multiplex congenitaExome SequencingOF-FUNCTION MUTATIONSGeneticsMedicine and Health SciencesgenomicsHumansGenetics (clinical)Exome sequencingArthrogryposisSanger sequencingGeneticsArthrogryposis multiplex congenitaGenetic heterogeneitySPINAL MUSCULAR-ATROPHYProteinsnervous system malformationsDYSTROPHYDisease gene identificationGENEHuman geneticsPedigreeETIOLOGYPhenotypesymbolsneuromuscularGenèticaTranscription Factors
researchProduct

Rare variants in the genetic background modulate cognitive and developmental phenotypes in individuals carrying disease-associated variants

2019

Purpose: To assess the contribution of rare variants in the genetic background toward variability of neurodevelopmental phenotypes in individuals with rare copy-number variants (CNVs) and gene-disruptive variants. Methods: We analyzed quantitative clinical information, exome sequencing, and microarray data from 757 probands and 233 parents and siblings who carry disease-associated variants. Results: The number of rare likely deleterious variants in functionally intolerant genes (“other hits”) correlated with expression of neurodevelopmental phenotypes in probands with 16p12.1 deletion (n=23, p=0.004) and in autism probands carrying gene-disruptive variants (n=184, p=0.03) compared with thei…

MaleParents0301 basic medicineProbandNeuronalGenetic Carrier Screening16p11.2 deletion030105 genetics & heredityCognitionFamily historyNeural Cell Adhesion MoleculesGenetics (clinical)Exome sequencingSequence DeletionGeneticsGenetic Carrier ScreeningPhenotypePenetrancePedigreePhenotypeAutistic Disorder/genetics; Autistic Disorder/physiopathology; Cell Adhesion Molecules Neuronal/genetics; Chromosomes Human Pair 16/genetics; Cognition/physiology; DNA Copy Number Variations/genetics; Female; Gene Expression Regulation/genetics; Genetic Background; Genetic Carrier Screening; Humans; Male; Methyltransferases/genetics; Nerve Tissue Proteins/genetics; Parents; Pedigree; Phenotype; Proteins/genetics; Sequence Deletion/genetics; Siblings; 16p11.2 deletion; CNV; autism; modifier; phenotypic variabilityFemaleGenetic BackgroundHumanDNA Copy Number VariationsCell Adhesion Molecules NeuronalCNVautismNerve Tissue ProteinsBiologyChromosomesArticle03 medical and health sciencesmental disordersmedicineHumansAutistic DisorderBiologyGenemodifierPair 16SiblingsCalcium-Binding ProteinsProteinsMethyltransferasesmedicine.disease16p11.2 deletion; autism; CNV; modifier; phenotypic variability; Genetics (clinical)Cytoskeletal Proteins030104 developmental biologyGene Expression Regulation[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsAutismphenotypic variabilityHuman medicine16p11.2 deletion; autism; CNV; modifier; phenotypic variability; Autistic Disorder; Cell Adhesion Molecules Neuronal; Chromosomes Human Pair 16; Cognition; DNA Copy Number Variations; Female; Gene Expression Regulation; Genetic Background; Humans; Male; Methyltransferases; Nerve Tissue Proteins; Parents; Pedigree; Phenotype; Proteins; Sequence Deletion; Siblings; Genetic Carrier ScreeningCell Adhesion MoleculesChromosomes Human Pair 16Transcription FactorsGenetics in Medicine
researchProduct

Genetic counselling difficulties and ethical implications of incidental findings from array-CGH: a 7-year national survey

2016

Microarray-based comparative genomic hybridization (aCGH) is commonly used in diagnosing patients with intellectual disability (ID) with or without congenital malformation. Because aCGH interrogates with the whole genome, there is a risk of being confronted with incidental findings (IF). In order to anticipate the ethical issues of IF with the generalization of new genome-wide analysis technologies, we questioned French clinicians and cytogeneticists about the situations they have faced regarding IF from aCGH. Sixty-five IF were reported. Forty corresponded to autosomal dominant diseases with incomplete penetrance, 7 to autosomal dominant diseases with complete penetrance, 14 to X-linked di…

0301 basic medicineGeneticsmedicine.medical_specialtyeducation.field_of_studyEthical issuesbusiness.industryGenetic counselingPopulationRetrospective cohort study030105 genetics & hereditymedicine.diseasePenetrance3. Good health03 medical and health sciencesGeneralization (learning)Family medicineIntellectual disabilityGeneticsMedicinebusinesseducationGenetics (clinical)Comparative genomic hybridizationClinical Genetics
researchProduct

Missense variants in DPYSL5 cause a neurodevelopmental disorder with corpus callosum agenesis and cerebellar abnormalities

2021

International audience; The collapsin response mediator protein (CRMP) family proteins are intracellular mediators of neurotrophic factors regulating neurite structure/spine formation and are essential for dendrite patterning and directional axonal pathfinding during brain developmental processes. Among this family, CRMP5/DPYSL5 plays a significant role in neuronal migration, axonal guidance, dendrite outgrowth, and synapse formation by interacting with microtubules. Here, we report the identification of missense mutations in DPYSL5 in nine individuals with brain malformations, including corpus callosum agenesis and/or posterior fossa abnormalities, associated with variable degrees of intel…

Models MolecularMale0301 basic medicineHydrolases[SDV]Life Sciences [q-bio]Hippocampal formationMedical and Health Sciences0302 clinical medicineNeurodevelopmental disorderTubulinModelsNeurotrophic factorsCerebellumIntellectual disability2.1 Biological and endogenous factorsMissense mutationAetiologyChilddendrite branchingGenetics (clinical)de novo missense variantsPediatricGenetics & HeredityDPYSL5Biological Sciences[SDV] Life Sciences [q-bio]corpus callosum agenesisMental HealthChild PreschoolNeurologicalFemaleMicrotubule-Associated ProteinsAdultNeuriteIntellectual and Developmental Disabilities (IDD)primary neuronal culturesMutation MissenseBiologyYoung Adult03 medical and health sciencesRare DiseasesMediatorReportIntellectual DisabilityGeneticsmedicineHumansPreschoolCorpus Callosum Agenesisbrain malformationNeurosciencesMolecularmedicine.diseaseneurodevelopmental disorderBrain Disorders030104 developmental biologyNeurodevelopmental DisordersMutationMissenseAgenesis of Corpus CallosumNeuroscience030217 neurology & neurosurgery
researchProduct

One NF1 Mutation may Conceal Another

2019

Neurofibromatosis type 1 (NF1) is an autosomal dominant disease with complete penetrance but high variable expressivity. NF1 is caused by loss-of-function mutations in the NF1 gene, a negative regulator of the RAS-MAPK pathway. The NF1 gene has one of the highest mutation rates in human disorders, which may explain the outbreak of independent de novo variants in the same family. Here, we report the co-occurrence of pathogenic variants in the NF1 and SPRED1 genes in six families with NF1 and Legius syndrome, using next-generation sequencing. In five of these families, we observed the co-occurrence of two independent NF1 variants. All NF1 variants were classified as pathogenic, according to t…

0301 basic medicineMutation ratemedicine.medical_specialtySPRED1congenital hereditary and neonatal diseases and abnormalities<i>SPRED1</i>lcsh:QH426-470[SDV]Life Sciences [q-bio]030105 genetics & heredityBiologyneurofibromatosis type 103 medical and health sciencesGeneticsmedicineNeurofibromatosisneoplasmsGenetics (clinical)Legius syndromeGeneticsMolecular pathologyAutosomal dominant traitmedicine.diseasePenetrance<i>NF1</i>eye diseases3. Good healthnervous system diseases[SDV] Life Sciences [q-bio]Legius syndromelcsh:Genetics030104 developmental biologyNF1Medical geneticsSPRED1 Genede novo variantGenes
researchProduct

Genotype-first in a cohort of 95 fetuses with multiple congenital abnormalities: when exome sequencing reveals unexpected fetal phenotype-genotype co…

2020

PurposeMolecular diagnosis based on singleton exome sequencing (sES) is particularly challenging in fetuses with multiple congenital abnormalities (MCA). Indeed, some studies reveal a diagnostic yield of about 20%, far lower than in live birth individuals showing developmental abnormalities (30%), suggesting that standard analyses, based on the correlation between clinical hallmarks described in postnatal syndromic presentations and genotype, may underestimate the impact of the genetic variants identified in fetal analyses.MethodsWe performed sES in 95 fetuses with MCA. Blind to phenotype, we applied a genotype-first approach consisting of combined analyses based on variants annotation and …

Candidate genemedicine.medical_specialtyGenotype[SDV]Life Sciences [q-bio]BiologyCongenital AbnormalitiesCohort Studiescomplex traits03 medical and health sciencesFetusMolecular geneticsGenotypemedicineHumansAbnormalities MultipleExomeClinical significancegeneticsGeneGenetic Association StudiesGenetics (clinical)Exome sequencing030304 developmental biologyGenetics0303 health sciencesFetus030305 genetics & hereditySequence Analysis DNAPhenotype[SDV] Life Sciences [q-bio]molecular geneticsreproductive medicine
researchProduct

Severe X-linked chondrodysplasia punctata in nine new female fetuses

2015

ObjectivesConradi-Hunermann-Happle [X-linked dominant chondrodysplasia punctata 2 (CDPX2)] syndrome is a rare X-linked dominant skeletal dysplasia usually lethal in men while affected women show wide clinical heterogeneity. Different EBP mutations have been reported. Severe female cases have rarely been reported, with only six antenatal presentations. MethodsTo better characterize the phenotype in female fetuses, we included nine antenatally diagnosed cases of women with EBP mutations. All cases were de novo except for two fetuses with an affected mother and one case of germinal mosaicism. ResultsThe mean age at diagnosis was 22weeks of gestation. The ultrasound features mainly included bon…

Stippling (dentistry)Fetusbusiness.industryIchthyosisObstetrics and GynecologyPhysiologyAnatomymedicine.disease3. Good healthmedicine.anatomical_structureDysplasiaEpiphysisGestationMedicineChondrodysplasia punctatabusinessGenetics (clinical)Epiphyseal stipplingPrenatal Diagnosis
researchProduct

Whole genome paired-end sequencing elucidates functional and phenotypic consequences of balanced chromosomal rearrangement in patients with developme…

2019

BackgroundBalanced chromosomal rearrangements associated with abnormal phenotype are rare events, but may be challenging for genetic counselling, since molecular characterisation of breakpoints is not performed routinely. We used next-generation sequencing to characterise breakpoints of balanced chromosomal rearrangements at the molecular level in patients with intellectual disability and/or congenital anomalies.MethodsBreakpoints were characterised by a paired-end low depth whole genome sequencing (WGS) strategy and validated by Sanger sequencing. Expression study of disrupted and neighbouring genes was performed by RT-qPCR from blood or lymphoblastoid cell line RNA.ResultsAmong the 55 pat…

AdultMale0301 basic medicineCandidate geneAdolescentDNA Copy Number VariationsDevelopmental Disabilities030105 genetics & heredityGenomeTranslocation GeneticStructural variationChromosome BreakpointsStructure-Activity RelationshipYoung Adult03 medical and health sciencessymbols.namesakeposition effectGeneticsHumansChildGeneGenetic Association StudiesGenetics (clinical)Paired-end tagComputingMilieux_MISCELLANEOUSchromosomal rearrangementsChromosome AberrationsGene RearrangementWhole genome sequencingGeneticsSanger sequencingwhole genome sequencingbiologystructural variationInfantNFIXPhenotype030104 developmental biology[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsintellectual disabilityChild Preschoolbiology.proteinsymbolsFemaleBiomarkers
researchProduct

Spectrum of mutations in the renin-angiotensin system genes in autosomal recessive renal tubular dysgenesis

2012

Autosomal recessive renal tubular dysgenesis (RTD) is a severe disorder of renal tubular development characterized by early onset and persistent fetal anuria leading to oligohydramnios and the Potter sequence, associated with skull ossification defects. Early death occurs in most cases from anuria, pulmonary hypoplasia, and refractory arterial hypotension. The disease is linked to mutations in the genes encoding several components of the renin-angiotensin system (RAS): AGT (angiotensinogen), REN (renin), ACE (angiotensin-converting enzyme), and AGTR1 (angiotensin II receptor type 1). Here, we review the series of 54 distinct mutations identified in 48 unrelated families. Most of them are no…

medicine.medical_specialty2716 Genetics (clinical)10039 Institute of Medical GeneticsAngiotensinogen030232 urology & nephrologyGenes RecessivePrenatal diagnosis610 Medicine & healthPeptidyl-Dipeptidase ABiologymedicine.disease_causeReceptor Angiotensin Type 1Kidney Tubules ProximalRenin-Angiotensin System03 medical and health sciences0302 clinical medicine1311 GeneticsInternal medicineReninRenin–angiotensin systemGeneticsmedicineAnimalsHumansGenetic Association StudiesGenetics (clinical)030304 developmental biology0303 health sciencesKidneyMutationAngiotensin II receptor type 1medicine.disease3. Good healthDisease Models Animalmedicine.anatomical_structureEndocrinologyUrogenital AbnormalitiesRenal blood flowMutation570 Life sciences; biologyAnuriamedicine.symptomPotter sequence
researchProduct

Rare variants in the genetic background modulate the expressivity of neurodevelopmental disorders

2018

AbstractPurposeTo assess the contribution of rare variants in the genetic background towards variability of neurodevelopmental phenotypes in individuals with rare copy-number variants (CNVs) and gene-disruptive mutations.MethodsWe analyzed quantitative clinical information, exome-sequencing, and microarray data from 757 probands and 233 parents and siblings who carry disease-associated mutations.ResultsThe number of rare secondary mutations in functionally intolerant genes (second-hits) correlated with the expressivity of neurodevelopmental phenotypes in probands with 16p12.1 deletion (n=23, p=0.004) and in probands with autism carrying gene-disruptive mutations (n=184, p=0.03) compared to …

GeneticsProband0303 health sciencesCandidate geneMutationGenetic heterogeneityDiseaseBiologymedicine.diseasemedicine.disease_cause03 medical and health sciences0302 clinical medicinemedicineAutismExpressivity (genetics)Family history030217 neurology & neurosurgery030304 developmental biology
researchProduct