0000000000205934

AUTHOR

Giuseppe Di Molfetta

showing 5 related works from this author

Quantum walk on a cylinder

2016

We consider the 2D alternate quantum walk on a cylinder. We concentrate on the study of the motion along the open dimension, in the spirit of looking at the closed coordinate as a small or "hidden" extra dimension. If one starts from localized initial conditions on the lattice, the dynamics of the quantum walk that is obtained after tracing out the small dimension shows the contribution of several components, which can be understood from the study of the dispersion relations for this problem. In fact, these components originate from the contribution of the possible values of the quasi-momentum in the closed dimension. In the continuous space-time limit, the different components manifest as …

High Energy Physics - Theorymass generationQuantum simulatorFOS: Physical sciencesQuantum entanglementGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum Cosmology010305 fluids & plasmassymbols.namesake[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]0103 physical sciencesquantum walksQuantum walkBoundary value problem010306 general physicsEntropy (arrow of time)ComputingMilieux_MISCELLANEOUSquantum simulationPhysicsQuantum Physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]Mass generationExtra dimensionsClassical mechanicsHigh Energy Physics - Theory (hep-th)Dirac equationsymbolsQuantum Physics (quant-ph)
researchProduct

Quantum simulation of quantum relativistic diffusion via quantum walks

2019

Two models are first presented, of one-dimensional discrete-time quantum walk (DTQW) with temporal noise on the internal degree of freedom (i.e., the coin): (i) a model with both a coin-flip and a phase-flip channel, and (ii) a model with random coin unitaries. It is then shown that both these models admit a common limit in the spacetime continuum, namely, a Lindblad equation with Dirac-fermion Hamiltonian part and, as Lindblad jumps, a chirality flip and a chirality-dependent phase flip, which are two of the three standard error channels for a two-level quantum system. This, as one may call it, Dirac Lindblad equation, provides a model of quantum relativistic spatial diffusion, which is ev…

Statistics and ProbabilityQuantum decoherenceDirac (software)FOS: Physical sciencesGeneral Physics and AstronomyQuantum simulator01 natural sciences010305 fluids & plasmassymbols.namesake[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Quantum mechanics0103 physical sciencesQuantum systemQuantum walk010306 general physicsQuantumComputingMilieux_MISCELLANEOUSMathematical PhysicsPhysicsQuantum PhysicsLindblad equationStatistical and Nonlinear Physics[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Modeling and SimulationsymbolsQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)Journal of Physics A: Mathematical and Theoretical
researchProduct

Electromagnetic lattice gauge invariance in two-dimensional discrete-time quantum walks

2018

International audience; Gauge invariance is one of the more important concepts in physics. We discuss this concept in connection with the unitary evolution of discrete-time quantum walks in one and two spatial dimensions, when they include the interaction with synthetic, external electromagnetic fields. One introduces this interaction as additional phases that play the role of gauge fields. Here, we present a way to incorporate those phases, which differs from previous works. Our proposal allows the discrete derivatives, that appear under a gauge transformation, to treat time and space on the same footing, in a way which is similar to standard lattice gauge theories. By considering two step…

Quantum informationHigh Energy Physics::Latticecurrent: conservation lawLattice field theoryFOS: Physical sciencescurrent: density01 natural sciences010305 fluids & plasmasrandom walksymbols.namesakeTheoretical physics[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]electromagnetic field0103 physical sciencesunitarityinvariance: gaugeQuantum walkDirac equationcontinuum limitGauge theorydimension: 2010306 general physicsConserved currentComputingMilieux_MISCELLANEOUSQuantum walksPhysicsQuantum PhysicsSpacetimeUnitaritylattice field theoryInvariant (physics)[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]electromagneticDirac equationsymbolsgauge field theoryQuantum simulationQuantum Physics (quant-ph)transformation: gaugeLattice gauge theoriesPhysical Review A
researchProduct

Dirac equation as a quantum walk over the honeycomb and triangular lattices

2018

A discrete-time Quantum Walk (QW) is essentially an operator driving the evolution of a single particle on the lattice, through local unitaries. Some QWs admit a continuum limit, leading to well-known physics partial differential equations, such as the Dirac equation. We show that these simulation results need not rely on the grid: the Dirac equation in $(2+1)$--dimensions can also be simulated, through local unitaries, on the honeycomb or the triangular lattice. The former is of interest in the study of graphene-like materials. The latter, we argue, opens the door for a generalization of the Dirac equation to arbitrary discrete surfaces.

FOS: Computer and information sciences[ INFO ] Computer Science [cs]Differential equationFOS: Physical sciencestriangulation01 natural sciences010305 fluids & plasmassymbols.namesakeHigh Energy Physics - Lattice[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Lattice (order)Mesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences[ PHYS.PHYS.PHYS-GEN-PH ] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]unitaritysurface[INFO]Computer Science [cs]Quantum walkHexagonal latticeDirac equationcontinuum limit010306 general physicsQuantumComputingMilieux_MISCELLANEOUSlatticeMathematical physicsPhysicsQuantum PhysicsPartial differential equationCondensed Matter - Mesoscale and Nanoscale PhysicsUnitarity[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]High Energy Physics - Lattice (hep-lat)[ PHYS.HLAT ] Physics [physics]/High Energy Physics - Lattice [hep-lat]differential equations[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Computer Science - Distributed Parallel and Cluster ComputingDirac equationsymbolsDistributed Parallel and Cluster Computing (cs.DC)Quantum Physics (quant-ph)Physical Review A
researchProduct

Quantum walks and non-Abelian discrete gauge theory

2016

A new family of discrete-time quantum walks (DTQWs) on the line with an exact discrete $U(N)$ gauge invariance is introduced. It is shown that the continuous limit of these DTQWs, when it exists, coincides with the dynamics of a Dirac fermion coupled to usual $U(N)$ gauge fields in $2D$ spacetime. A discrete generalization of the usual $U(N)$ curvature is also constructed. An alternate interpretation of these results in terms of superimposed $U(1)$ Maxwell fields and $SU(N)$ gauge fields is discussed in the Appendix. Numerical simulations are also presented, which explore the convergence of the DTQWs towards their continuous limit and which also compare the DTQWs with classical (i.e. non-qu…

PhysicsQuantum PhysicsSpacetimeHigh Energy Physics::LatticeFOS: Physical sciencesGauge (firearms)01 natural sciences[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]010305 fluids & plasmasInterpretation (model theory)symbols.namesakeDirac fermion[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Quantum mechanics0103 physical sciencessymbols[ PHYS.PHYS.PHYS-GEN-PH ] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Quantum walkGauge theoryAbelian group010306 general physicsQuantum Physics (quant-ph)QuantumComputingMilieux_MISCELLANEOUSMathematical physics
researchProduct