0000000000206017

AUTHOR

D. La Marra

showing 5 related works from this author

In-flight performance of the DAMPE silicon tracker

2018

Abstract DAMPE (DArk Matter Particle Explorer) is a spaceborne high-energy cosmic ray and gamma-ray detector , successfully launched in December 2015. It is designed to probe astroparticle physics in the broad energy range from few GeV to 100 TeV. The scientific goals of DAMPE include the identification of possible signatures of Dark Matter annihilation or decay, the study of the origin and propagation mechanisms of cosmic-ray particles, and gamma-ray astronomy . DAMPE consists of four sub-detectors: a plastic scintillator strip detector, a Silicon–Tungsten tracKer–converter (STK), a BGO calorimeter and a neutron detector . The STK is composed of six double layers of single-sided silicon mi…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaGamma rayDark matterFOS: Physical sciencesCosmic rayScintillator01 natural sciences7. Clean energyOptics0103 physical sciencesDark matterNeutron detection010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Cosmic raysInstrumentationNuclear and High Energy PhysicAstroparticle physicsPhysicsCalorimeter (particle physics)010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleDetectorGamma raysGamma rayInstrumentation and Detectors (physics.ins-det)Cosmic raySpaceborne experimentSilicon trackerHigh Energy Physics::ExperimentAstrophysics - Instrumentation and Methods for AstrophysicsbusinessCosmic rays; Dark matter; Gamma rays; Silicon tracker; Spaceborne experiment; Nuclear and High Energy Physics; Instrumentation
researchProduct

Technical design of the phase I Mu3e experiment

2021

Nuclear instruments & methods in physics research / A 1014, 165679 (2021). doi:10.1016/j.nima.2021.165679

Nuclear and High Energy PhysicsParticle physicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsflavor: violation [lepton]FOS: Physical sciencesElectron7. Clean energy01 natural sciences530muon: decayTechnical designMuon decaysHigh Energy Physics - Experimentdesign [detector]High Energy Physics - Experiment (hep-ex)decay [muon]Scintillating tilesPositronsemiconductor detector: pixelScintillating fibres0103 physical sciencesscintillation counter: fibreddc:530tracking detector010306 general physicsInstrumentationEngineering & allied operationsactivity reportdetector: designPhysicspixel [semiconductor detector]MuonPixel010308 nuclear & particles physicsDetectorMonolithic pixel detectorlepton: flavor: violationInstrumentation and Detectors (physics.ins-det)fibre [scintillation counter]sensitivityLepton flavour violationBeamlineHigh Energy Physics::Experimentddc:620performanceLepton
researchProduct

A charge reconstruction algorithm for DAMPE silicon microstrip detectors

2019

Abstract The DArk Matter Particle Explorer (DAMPE) can detect electrons and photons from 5 GeV to 10 TeV and charged nuclei from a few tens of GeV to 100 TeV. The silicon–tungstentracker (STK), which is composed of 768 singled-sided silicon microstrip detectors, is one of four subdetectors in DAMPE providing photon conversion , track reconstruction, and charge identification for relativistic charged particles. This paper focuses on the charge identification performance of the STK detector. The charge response depends mainly on the incident angle and the impact position of the incoming particle. To improve the charge resolution, a reconstruction algorithm to correct for these parameters was …

PhysicsNuclear and High Energy PhysicsPhotonLarge Hadron ColliderIon beamPhysics::Instrumentation and Detectors010308 nuclear & particles physicsCharge reconstructionSTKSettore FIS/01 - Fisica SperimentaleReconstruction algorithmElectron01 natural sciencesCharged particleCharge sharingIonNuclear physicsSilicon microstrip detector0103 physical sciencesDAMPEHigh Energy Physics::ExperimentCharge sharing010303 astronomy & astrophysicsInstrumentation
researchProduct

Internal alignment and position resolution of the silicon tracker of DAMPE determined with orbit data

2017

Abstract The DArk Matter Particle Explorer (DAMPE) is a space-borne particle detector designed to probe electrons and gamma-rays in the few GeV to 10 TeV energy range, as well as cosmic-ray proton and nuclei components between 10 GeV and 100 TeV. The silicon–tungsten tracker–converter is a crucial component of DAMPE. It allows the direction of incoming photons converting into electron–positron pairs to be estimated, and the trajectory and charge (Z) of cosmic-ray particles to be identified. It consists of 768 silicon micro-strip sensors assembled in 6 double layers with a total active area of 6.6 m 2 . Silicon planes are interleaved with three layers of tungsten plates, resulting in about o…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhotonSiliconProtonPhysics::Instrumentation and DetectorsAlignment; Cosmic-ray detectors; Gamma-ray telescopes; Silicon-strip detectors; Nuclear and High Energy Physics; InstrumentationGamma-ray telescopesAstrophysics::High Energy Astrophysical PhenomenaCosmic-ray detectorsFOS: Physical scienceschemistry.chemical_elementElectron01 natural sciencesSilicon-strip detectorRadiation lengthParticle detectorOptics0103 physical sciences010303 astronomy & astrophysicsInstrumentationImage resolutionNuclear and High Energy PhysicAlignmentPhysicsRange (particle radiation)010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleInstrumentation and Detectors (physics.ins-det)Cosmic-ray detectorSilicon-strip detectorschemistryGamma-ray telescopeHigh Energy Physics::ExperimentbusinessNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

The DAMPE silicon–tungsten tracker

2016

Abstract The DArk Matter Particle Explorer (DAMPE) is a spaceborne astroparticle physics experiment, launched on 17 December 2015. DAMPE will identify possible dark matter signatures by detecting electrons and photons in the 5 GeV–10 TeV energy range. It will also measure the flux of nuclei up to 100 TeV, for the study of the high energy cosmic ray origin and propagation mechanisms. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon–tungsten tracker–converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is composed of six tracking planes of 2 orthogonal layers of single-sided micro-strip detectors, for a total detector surface of ca. 7 m2. T…

Nuclear and High Energy PhysicsCosmic rays; Dark matter; Silicon tracker; Spaceborne experiment; Nuclear and High Energy Physics; InstrumentationPhysics::Instrumentation and DetectorsCosmic rayParticle detectorsTracking (particle physics)01 natural sciencesParticle detectorOpticscosmic rays0103 physical sciencesDark matterNeutron detection010303 astronomy & astrophysicsInstrumentationAstroparticle physicsPhysicsLarge Hadron ColliderCalorimeter (particle physics)010308 nuclear & particles physicsbusiness.industryDetectorSettore FIS/01 - Fisica SperimentaleParticle detectors cosmic raysSpaceborne experimentSilicon trackerHigh Energy Physics::Experimentbusiness
researchProduct