0000000000206567

AUTHOR

Bastian Duenges

Multi frequency phase fluorimetry (MFPF) for oxygen partial pressure measurement: ex vivo validation by polarographic clark-type electrode.

BACKGROUND: Measurement of partial pressure of oxygen (PO2) at high temporal resolution remains a technological challenge. This study introduces a novel PO2 sensing technology based on Multi-Frequency Phase Fluorimetry (MFPF). The aim was to validate MFPF against polarographic Clark-type electrode (CTE) PO2 measurements. METHODOLOGY/PRINCIPAL FINDINGS: MFPF technology was first investigated in N = 8 anaesthetised pigs at FIO2 of 0.21, 0.4, 0.6, 0.8 and 1.0. At each FIO2 level, blood samples were withdrawn and PO2 was measured in vitro with MFPF using two FOXY-AL300 probes immediately followed by CTE measurement. Secondly, MFPF-PO2 readings were compared to CTE in an artificial circulatory s…

research product

Bi-Level ventilation decreases pulmonary shunt and modulates neuroinflammation in a cardiopulmonary resuscitation model

Background Optimal ventilation strategies during cardiopulmonary resuscitation are still heavily debated and poorly understood. So far, no convincing evidence could be presented in favour of outcome relevance and necessity of specific ventilation patterns. In recent years, alternative models to the guideline-based intermittent positive pressure ventilation (IPPV) have been proposed. In this randomized controlled trial, we evaluated a bi-level ventilation approach in a porcine model to assess possible physiological advantages for the pulmonary system as well as resulting changes in neuroinflammation compared to standard measures. Methods Sixteen male German landrace pigs were anesthetized a…

research product

A comparison of micropore membrane inlet mass spectrometry–derived pulmonary shunt measurement with riley shunt in a porcine model

The multiple inert gas elimination technique was developed to measure shunt and the ratio of alveolar ventilation to simultaneous alveolar capillary blood flow in any part of the lung (V(A)'/Q') distributions. Micropore membrane inlet mass spectrometry (MMIMS), instead of gas chromatography, has been introduced for inert gas measurement and shunt determination in a rabbit lung model. However, agreement with a frequently used and accepted method for quantifying deficits in arterial oxygenation has not been established. We compared MMIMS-derived shunt (M-S) as a fraction of total cardiac output (CO) with Riley shunt (R-S) derived from the R-S formula in a porcine lung injury model.To allow a …

research product

An inhaled tumor necrosis factor-alpha-derived TIP peptide improves the pulmonary function in experimental lung injury: inhaled TIP peptide in experimental ALI

INTRODUCTION The lectin-like domain of TNF-α enhances the fluid clearance across the alveolar barrier. For experimental purposes, the lectin-like domain can be mimicked by a synthetic peptide representing the TIP-motif of TNF-α. The present study aims to assess the acute effect of TIP on the pulmonary function in a porcine model of acute respiratory distress syndrome (ARDS). METHODS Lung injury was induced in 16 pigs (25-27 kg) by bronchoalveolar lavage followed by injurious ventilation. Following randomisation, either nebulised TIP (1 mg/kg; AP301, APEPTICO, Vienna, Austria) or water for injection (control group) was administered. During 5 h of monitoring, the extravascular lung water inde…

research product

Ultra-low tidal volume ventilation-A novel and effective ventilation strategy during experimental cardiopulmonary resuscitation.

Abstract Background The effects of different ventilation strategies during CPR on patient outcomes and lung physiology are still poorly understood. This study compares positive pressure ventilation (IPPV) to passive oxygenation (CPAP) and a novel ultra-low tidal volume ventilation (ULTVV) regimen in an experimental ventricular fibrillation animal model. Study design Prospective randomized controlled trial. Animals 30 male German landrace pigs (16–20 weeks). Methods Ventricular fibrillation was induced in anesthetized and instrumented pigs and the animals were randomized into three groups. Mechanical CPR was initiated and ventilation was either provided by means of standard IPPV (RR: 10/min,…

research product

Ventilation/perfusion ratios measured by multiple inert gas elimination during experimental cardiopulmonary resuscitation

Background During cardiopulmonary resuscitation (CPR) the ventilation/perfusion distribution (VA/Q) within the lung is difficult to assess. This experimental study examines the capability of multiple inert gas elimination (MIGET) to determine VA/Q under CPR conditions in a pig model. Methods Twenty-one anaesthetised pigs were randomised to three fractions of inspired oxygen (1.0, 0.7 or 0.21). VA/Q by micropore membrane inlet mass spectrometry-derived MIGET was determined at baseline and during CPR following induction of ventricular fibrillation. Haemodynamics, blood gases, ventilation distribution by electrical impedance tomography and return of spontaneous circulation were assessed. Inter…

research product

Influence of respiratory rate and end-expiratory pressure variation on cyclic alveolar recruitment in an experimental lung injury model

Introduction Cyclic alveolar recruitment/derecruitment (R/D) is an important mechanism of ventilator-associated lung injury. In experimental models this process can be measured with high temporal resolution by detection of respiratory-dependent oscillations of the paO2 (ΔpaO2). A previous study showed that end-expiratory collapse can be prevented by an increased respiratory rate in saline-lavaged rabbits. The current study compares the effects of increased positive end-expiratory pressure (PEEP) versus an individually titrated respiratory rate (RRind) on intra-tidal amplitude of Δ paO2 and on average paO2 in saline-lavaged pigs. Methods Acute lung injury was induced by bronchoalveolar lavag…

research product

Observation of ventilation-induced Spo(2) oscillations in pigs: first step to noninvasive detection of cyclic recruitment of atelectasis?

High arterial partial oxygen pressure (Pao(2)) oscillations within the respiratory cycle were described recently in experimental acute lung injury. This phenomenon has been related to cyclic recruitment of atelectasis and varying pulmonary shunt fractions. Noninvasive detection of Spo(2) (oxygen saturation measured by pulse oximetry) as an indicator of cyclic collapse of atelectasis, instead of recording Pao(2) oscillations, could be of clinical interest in critical care. Spo(2) oscillations were recorded continuously in three different cases of lung damage to demonstrate the technical feasibility of this approach. To deduce Pao(2) from Spo(2), a mathematical model of the hemoglobin dissoci…

research product

Pulmonary effects of expiratory-assisted small-lumen ventilation during upper airway obstruction in pigs

Summary Novel devices for small-lumen ventilation may enable effective inspiration and expiratory ventilation assistance despite airway obstruction. In this study, we investigated a porcine model of complete upper airway obstruction. After ethical approval, we randomly assigned 13 anaesthetised pigs either to small-lumen ventilation following airway obstruction (n = 8) for 30 min, or to volume-controlled ventilation (sham setting, n = 5). Small-lumen ventilation enabled adequate gas exchange over 30 min. One animal died as a result of a tension pneumothorax in this setting. Redistribution of ventilation from dorsal to central compartments and significant impairment of the distribution of ve…

research product