Physical properties of (1−x)Ba0.95Pb0.05TiO3+xCo2O3 (x=0, 0.1, 0.3, 0.5, 1.0, 2.0wt%) ceramics
The paper reports studies of the (1−x)Ba0.95Pb0.05TiO3 – xCo2O3 (x≤0.02) ceramics. Results of X-ray powder diffraction, dielectric, magnetic and IR measurements, as well as ab initio simulations are presented. The Co-doping induces small decrease of the (c/a) tetragonality of the perovskite lattice and leads to the gradual shift of the ferroelectric transition temperature from 398 K for x=0 down to 357 K for x=0.02. The conductivity activation energies are in the range 0.8–0.9 eV in agreement with the calculations. The high-temperature conductivity can be ascribed by the migration of oxygen vacancies introduced to compensate the charge deficiency due to Co3+ valence at the B-site of the per…
X-ray and dielectric characterization of Co doped tetragonal BaTiO3 ceramics
ABSTRACTThe crystal structure modifications of BaTiO3 induced by cobalt doping were studied. The polycrystalline (1 − x)BaTiO3 + xCo2O3 samples, with x ≤ 10 wt.%, were prepared by high temperature sintering conventional method. According to X-ray phase and structural characterization, performed by full-profile Rietveld refinement technique, all synthesized samples showed tetragonal symmetry perovskite structure with minor amount of parasitic phases. Pure single-phase composition has been detected only in the low level of doping BaTiO3. It was indicated that substitution of Co for the Ti sites in the (1 − x)BaTiO3 + xCo2O3 series led to decrease of tetragonality (c/a) of the BaTiO3 perovskit…
Band Gap Engineering and Trap Depths of Intrinsic Point Defects in RAlO3 (R = Y, La, Gd, Yb, Lu) Perovskites
The work was supported by the Polish National Science Centre (Project No. 2018/31/B/ST8/00774), by the NATO SPS Project G5647, and by the Ministry of Education and Science of Ukraine (Project DB/Kinetyka no. 0119U002249). L.V. acknowledges support of the National Research Foundation of Ukraine under Grant No. 2020.02/0373 “Crystalline phosphors’ engineering for biomedical applications, energy saving lighting and contactless thermometry”. Researchers from Tartu were supported by the ERDF fundings in Estonia granted to the Centre of Excellence TK141 “Advanced materials and high-technology devices for sustainable energetics, sensorics and nanoelectronics (HiTechDevices)” (Grant No. 2014-2020.4…
Structural, magnetic, dielectric and mechanical properties of (Ba,Sr)MnO3 ceramics
The authors acknowledge the CPU time allocation at Academic Computer Centre CYFRONET AGH in Cracow. This work was supported in part by PL-Grid Infrastructure and the European Regional Development Fund under the Infrastructure and Environment Programme [grant number UDA-POIS.13.01-023/09-00]. The research was partially carried out with the equipment purchased thanks to the financial support of the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program (contract no. POIG.02.01.00-12-023/08). L. Vasylechko acknowledges partial support of the Ukrainian Ministry of Education and Sciences under the Projects ?RZE?, ?KMON?, and ICDD Grant-in-Aid pro…
Physical Properties of Ba0.95Pb0.05TiO3+0.1%Co2O3
The single-phase perovskite structure of the Ba0.95Pb0.05TiO3+0.1%Co2O3 ceramics was confirmed by the X-ray diffraction method. Microstructural studies revealed that the samples were of good quality and chemically homogeneous. The thermal behaviour of ceramics was studied using the in situ high-temperature X-ray synchrotron powder diffraction investigation. The energy gap of about 3.2 eV was estimated using a reflectance spectroscopy. Measurements showed the influence of Pb and Co on the character of phase transition in the BaTiO3 structure. The results were compared to the ones obtained for pure BaTiO3.
Effect of cobalt doping on the dielectric response of $B_{0.95}Pb_{0.05}TiO_3$ ceramics
Dielectric response of Ba 0.95 Pb 0.05 TiO 3 ceramics doped with 0.1 and 1 wt.% of Co 2 O 3 , synthesized by conven- tional high-temperature method, wa s studied in wide temperature and frequency range. The temperature dependences of the real and the imaginary parts of dielectric permittivity of the ceramics were compared with those of BaTiO 3 and Ba 0.95 Pb 0.05 TiO 3. The addition of Co 3+ ions results in a broadening of dielectric anom- alies related to the transition to p araelectric cubic phase, and the structural transition between the tetragonal and the orthorhombic phases. At low temperatures (125 – 200 K) the dielectric absorp- tion of Co-doped Ba 0.95 Pb 0.05 TiO 3 ceramics was fo…