0000000000206762

AUTHOR

Caroline Kalla

showing 4 related works from this author

New degeneration of Fay's identity and its application to integrable systems

2011

In this paper, we find a new degenerated version of Fay's trisecant identity; this degeneration corresponds to the limit when the four points entering the trisecant identity coincide pairwise. This degenerated version of Fay's identity is used to construct algebro-geometric solutions to the multi-component nonlinear Schrodinger equation. This identity also leads to an independent derivation of algebro-geometric solutions to the Davey–Stewartson equations previously obtained in [17] in the framework of the Krichever scheme. We also give the condition of smoothness of the obtained solutions.

Pure mathematicsIntegrable systemGeneral MathematicsMathematics::Analysis of PDEsFOS: Physical sciences01 natural sciencesIdentity (music)Mathematics - Algebraic Geometrysymbols.namesakeMathematics::Algebraic Geometry[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesFOS: MathematicsLimit (mathematics)[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]0101 mathematics010306 general physicsAlgebraic Geometry (math.AG)Nonlinear Schrödinger equationNonlinear Sciences::Pattern Formation and SolitonsMathematical PhysicsMathematicsSmoothness (probability theory)010102 general mathematics[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG][ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Mathematical Physics (math-ph)[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]Nonlinear Sciences::Exactly Solvable and Integrable SystemsScheme (mathematics)symbolsPairwise comparison[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
researchProduct

Computation of the topological type of a real Riemann surface

2014

We present an algorithm for the computation of the topological type of a real compact Riemann surface associated to an algebraic curve, i.e., its genus and the properties of the set of fixed points of the anti-holomorphic involution τ \tau , namely, the number of its connected components, and whether this set divides the surface into one or two connected components. This is achieved by transforming an arbitrary canonical homology basis to a homology basis where the A \mathcal {A} -cycles are invariant under the anti-holomorphic involution  τ \tau .

Surface (mathematics)Algebra and Number TheoryApplied MathematicsRiemann surfaceMathematicsofComputing_GENERALHomology (mathematics)Type (model theory)TopologyComputational Mathematicssymbols.namesakeGenus (mathematics)symbolsAlgebraic curveCompact Riemann surfaceInvariant (mathematics)MathematicsMathematics of Computation
researchProduct

New construction of algebro-geometric solutions to the Camassa-Holm equation and their numerical evaluation

2011

An independent derivation of solutions to the Camassa-Holm equation in terms of multi-dimensional theta functions is presented using an approach based on Fay's identities. Reality and smoothness conditions are studied for these solutions from the point of view of the topology of the underlying real hyperelliptic surface. The solutions are studied numerically for concrete examples, also in the limit where the surface degenerates to the Riemann sphere, and where solitons and cuspons appear.

Surface (mathematics)General MathematicsFOS: Physical sciencesGeneral Physics and AstronomyRiemann sphereTheta function01 natural sciences010305 fluids & plasmassymbols.namesake[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesLimit (mathematics)0101 mathematics[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Shallow water equationsNonlinear Sciences::Pattern Formation and SolitonsMathematical PhysicsMathematicsSmoothnessCamassa–Holm equationNonlinear Sciences - Exactly Solvable and Integrable Systems010102 general mathematicsMathematical analysisGeneral Engineering[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Mathematical Physics (math-ph)Nonlinear Sciences::Exactly Solvable and Integrable SystemssymbolsExactly Solvable and Integrable Systems (nlin.SI)Hyperelliptic surfaceProc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 468 (2012), no. 2141, 1371–1390
researchProduct

Breathers and solitons of generalized nonlinear Schrödinger equations as degenerations of algebro-geometric solutions

2011

We present new solutions in terms of elementary functions of the multi-component nonlinear Schr\"odinger equations and known solutions of the Davey-Stewartson equations such as multi-soliton, breather, dromion and lump solutions. These solutions are given in a simple determinantal form and are obtained as limiting cases in suitable degenerations of previously derived algebro-geometric solutions. In particular we present for the first time breather and rational breather solutions of the multi-component nonlinear Schr\"odinger equations.

Statistics and ProbabilityBreatherMathematics::Analysis of PDEsGeneral Physics and AstronomyFOS: Physical sciences01 natural sciences010305 fluids & plasmasSchrödinger equationsymbols.namesakeMathematics - Analysis of PDEsSimple (abstract algebra)[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesFOS: MathematicsElementary function[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]010306 general physicsNonlinear Sciences::Pattern Formation and SolitonsMathematical PhysicsMathematical physicsPhysics[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Statistical and Nonlinear PhysicsLimitingMathematical Physics (math-ph)Mathematics::Spectral TheoryNonlinear systemNonlinear Sciences::Exactly Solvable and Integrable SystemsModeling and SimulationsymbolsAnalysis of PDEs (math.AP)
researchProduct