0000000000206788
AUTHOR
Eric Nivel
Learning problem solving skills from demonstration: An architectural approach
We present an architectural approach to learning problem solving skills from demonstration, using internal models to represent problem-solving operational knowledge. Internal forward and inverse models are initially learned through active interaction with the environment, and then enhanced and finessed by observing expert teachers. While a single internal model is capable of solving a single goal-oriented task, it is their sequence that enables the system to hierarchically solve more complex task. Activation of models is goal-driven, and internal ”mental” simulations are used to predict and anticipate future rewards and perils and to make decisions accordingly. In this approach intelligent …
Bounded Seed-AGI
Four principal features of autonomous control systems are left both unaddressed and unaddressable by present-day engineering methodologies: (1) The ability to operate effectively in environments that are only partially known at design time; (2) A level of generality that allows a system to re-assess and re-define the fulfillment of its mission in light of unexpected constraints or other unforeseen changes in the environment; (3) The ability to operate effectively in environments of significant complexity; and (4) The ability to degrade gracefully—how it can continue striving to achieve its main goals when resources become scarce, or in light of other expected or unexpected constraining fact…
An architecture for observational learning and decision making based on internal models
We present a cognitive architecture whose main constituents are allowed to grow through a situated experience in the world. Such an architectural growth is bootstrapped from a minimal initial knowledge and the architecture itself is built around the biologically-inspired notion of internal models. The key idea, supported by findings in cognitive neuroscience, is that the same internal models used in overt goal-directed action execution can be covertly re-enacted in simulation to provide a unifying explanation to a number of apparently unrelated individual and social phenomena, such as state estimation, action and intention understanding, imitation learning and mindreading. Thus, rather than…
Simulation and anticipation as tools for coordinating with the future
A key goal in designing an artificial intelligence capable of performing complex tasks is a mechanism that allows it to efficiently choose appropriate and relevant actions in a variety of situations and contexts. Nowhere is this more obvious than in the case of building a general intelligence, where the contextual choice and application of actions must be done in the presence of large numbers of alternatives, both subtly and obviously distinct from each other. We present a framework for action selection based on the concurrent activity of multiple forward and inverse models. A key characteristic of the proposed system is the use of simulation to choose an action: the system continuously sim…