0000000000207763

AUTHOR

Ana Rodrigo-simón

showing 5 related works from this author

Bacillus thuringiensis Cry1Ac Toxin-Binding and Pore-Forming Activity in Brush Border Membrane Vesicles Prepared from Anterior and Posterior Midgut R…

2008

ABSTRACT It is generally accepted that Bacillus thuringiensis Cry toxins insert into the apical membrane of the larval midgut after binding to specific receptors, and there is evidence that the distribution of binding molecules along the midgut is not uniform. By use of the voltage-sensitive dye DiSC 3 (5) and 125 I-labeled Cry1Ac, we have measured the effect of Cry1Ac in terms of permeabilization capacity and of binding parameters on brush border membrane vesicles (BBMV) prepared from the anterior and the posterior regions of the larval midgut from two insect species, Manduca sexta and Helicoverpa armigera . The permeabilizing activity was significantly higher with BBMV from the posterior …

Cell Membrane PermeabilityBrush bordermedia_common.quotation_subjectBacterial ProteinInsectApplied Microbiology and BiotechnologyIodine RadioisotopeIodine RadioisotopesHemolysin ProteinsEndotoxinBacterial ProteinsManducaBacillus thuringiensisInvertebrate MicrobiologyAnimalsmedia_commonBacillus thuringiensis ToxinsMicrovilliEcologybiologyAnimalVesiclefungiMidgutHemolysin ProteinApical membraneAlkaline Phosphatasebiology.organism_classificationEndotoxinsEnzyme ActivationLepidopteraBiochemistryManduca sextaLarvaPotassiumBiophysicsManducaDigestive SystemProtein BindingFood ScienceBiotechnologyApplied and Environmental Microbiology
researchProduct

Lack of Detrimental Effects of Bacillus thuringiensis Cry Toxins on the Insect Predator Chrysoperla carnea : a Toxicological, Histopathological, and …

2006

ABSTRACT The effect of Cry proteins of Bacillus thuringiensis on the green lacewing ( Chrysoperla carnea ) was studied by using a holistic approach which consisted of independent, complementary experimental strategies. Tritrophic experiments were performed, in which lacewing larvae were fed Helicoverpa armigera larvae reared on Cry1Ac, Cry1Ab, or Cry2Ab toxins. In complementary experiments, a predetermined amount of purified Cry1Ac was directly fed to lacewing larvae. In both experiments no effects on prey utilization or fitness parameters were found. Since binding to the midgut is an indispensable step for toxicity of Cry proteins to known target insects, we hypothesized that specific bind…

InsectanoctuidaeBacterial ToxinsBacillus thuringiensisHelicoverpa armigeraApplied Microbiology and BiotechnologyHemolysin ProteinsBacterial ProteinsBacillus thuringiensisBotanyExiguaInvertebrate MicrobiologyAnimalsBioassaycrystal proteinsPest Control BiologicalChrysoperla carnealarval midgutBacillus thuringiensis ToxinsMicrovilliEcologybiologybinding-sitesfungitoxicityMidgutbiology.organism_classificationspodoptera-exiguaEndotoxinsPRI BioscienceBiochemistryCry1Acmaize expressing cry1abNoctuidaeDigestive Systemborder membrane-vesicleshelicoverpa-armigera lepidopteraFood ScienceBiotechnologyresistant transgenic plants
researchProduct

Cross-resistance and mechanism of resistance to Cry1Ab toxin from Bacillus thuringiensis in a field-derived strain of European corn borer, Ostrinia n…

2011

The cross-resistance spectrum and biochemical mechanism of resistance to the Bacillus thuringiensis Cry1Ab toxin was studied in a field-derived strain of Ostrinia nubilalis (Hubner) (Lepidoptera: Crambidae) that was further selected in the laboratory for high levels (>1000-fold) of resistance to Cry1Ab. The resistant strain exhibited high levels of cross-resistance to Cry1Ac and Cry1Aa but only low levels of cross-resistance (<4-fold) to Cry1F. In addition, there was no significant difference between the levels of resistance to full-length and trypsin-activated Cry1Ab protein. No differences in activity of luminal gut proteases or altered proteolytic processing of the toxin were observed in…

European corn borerBt maizeImmunoblottingResistanceDrug ResistanceBacillus thuringiensisOstrinia nubilalisMothsmedicine.disease_causeOstriniaMicrobiologyHemolysin ProteinsCrambidaeBacterial ProteinsBacillus thuringiensismedicineAnimalsEcology Evolution Behavior and SystematicsCross-resistancebiologyStrain (chemistry)Bacillus thuringiensis ToxinsMicrovilliToxinfungifood and beveragesLuminal gut proteasesbiology.organism_classificationToxin bindingEndotoxinsCry1AcBiological Assay
researchProduct

Production and characterization of Bacillus thuringiensis Cry1Ac-resistant cotton bollworm Helicoverpa zea (Boddie).

2007

ABSTRACT Laboratory-selected Bacillus thuringiensis -resistant colonies are important tools for elucidating B. thuringiensis resistance mechanisms. However, cotton bollworm, Helicoverpa zea , a target pest of transgenic corn and cotton expressing B. thuringiensis Cry1Ac (Bt corn and cotton), has proven difficult to select for stable resistance. Two populations of H. zea (AR and MR), resistant to the B. thuringiensis protein found in all commercial Bt cotton varieties (Cry1Ac), were established by selection with Cry1Ac activated toxin (AR) or MVP II (MR). Cry1Ac toxin reflects the form ingested by H. zea when feeding on Bt cotton, whereas MVP II is a Cry1Ac formulation used for resistance se…

Bacterial ToxinsBacillus thuringiensisMothsGossypiumApplied Microbiology and BiotechnologyCypermethrinInsecticide Resistancechemistry.chemical_compoundHemolysin ProteinsBacterial ProteinsBacillus thuringiensisInvertebrate MicrobiologyAnimalsPest Control BiologicalGossypiumGenetically modified maizeEcologybiologyBacillus thuringiensis Toxinsfungifood and beveragesbiology.organism_classificationPlants Genetically ModifiedEndotoxinsHorticulturechemistryAgronomyCry1AcBt cottonHelicoverpa zeaPEST analysisFood ScienceBiotechnologyProtein BindingApplied and environmental microbiology
researchProduct

Mechanism of Resistance to Bacillus thuringiensis Toxin Cry1Ac in a Greenhouse Population of the Cabbage Looper, Trichoplusia ni

2007

ABSTRACT The cabbage looper, Trichoplusia ni , is one of only two insect species that have evolved resistance to Bacillus thuringiensis in agricultural situations. The trait of resistance to B. thuringiensis toxin Cry1Ac from a greenhouse-evolved resistant population of T. ni was introgressed into a highly inbred susceptible laboratory strain. The resulting introgression strain, GLEN-Cry1Ac-BCS, and its nearly isogenic susceptible strain were subjected to comparative genetic and biochemical studies to determine the mechanism of resistance. Results showed that midgut proteases, hemolymph melanization activity, and midgut esterase were not altered in the GLEN-Cry1Ac-BCS strain. The pattern of…

InsecticidesBacterial ToxinsPopulationBacillus thuringiensisDrug ResistanceBrassicaInsect ControlApplied Microbiology and BiotechnologyMicrobiologyHemolysin ProteinsBacterial ProteinsCabbage looperBacillus thuringiensisHemolymphBotanyInvertebrate MicrobiologyTrichoplusiaAnimalseducationeducation.field_of_studyBacillus thuringiensis ToxinsEcologybiologyStrain (chemistry)fungifood and beveragesMidgutbiology.organism_classificationEndotoxinsLepidopteraCry1AcFood ScienceBiotechnologyApplied and Environmental Microbiology
researchProduct