0000000000207791
AUTHOR
Marco Necci
RepeatsDB in 2021: improved data and extended classification for protein tandem repeat structures
The RepeatsDB database (URL: https://repeatsdb.org/) provides annotations and classification for protein tandem repeat structures from the Protein Data Bank (PDB). Protein tandem repeats are ubiquitous in all branches of the tree of life. The accumulation of solved repeat structures provides new possibilities for classification and detection, but also increasing the need for annotation. Here we present RepeatsDB 3.0, which addresses these challenges and presents an extended classification scheme. The major conceptual change compared to the previous version is the hierarchical classification combining top levels based solely on structural similarity (Class > Topology > Fold) with two new lev…
A novel approach to investigate the evolution of structured tandem repeat protein families by exon duplication.
Tandem Repeat Proteins (TRPs) are ubiquitous in cells and are enriched in eukaryotes. They contributed to the evolution of organism complexity, specializing for functions that require quick adaptability such as immunity-related functions. To investigate the hypothesis of repeat protein evolution through exon duplication and rearrangement, we designed a tool to analyze the relationships between exon/intron patterns and structural symmetries. The tool allows comparison of the structure fragments as defined by exon/intron boundaries from Ensembl against the structural element repetitions from RepeatsDB. The all-against-all pairwise structural alignment between fragments and comparison of the t…
PlaToLoCo: the first web meta-server for visualization and annotation of low complexity regions in proteins
Abstract Low complexity regions (LCRs) in protein sequences are characterized by a less diverse amino acid composition compared to typically observed sequence diversity. Recent studies have shown that LCRs may co-occur with intrinsically disordered regions, are highly conserved in many organisms, and often play important roles in protein functions and in diseases. In previous decades, several methods have been developed to identify regions with LCRs or amino acid bias, but most of them as stand-alone applications and currently there is no web-based tool which allows users to explore LCRs in protein sequences with additional functional annotations. We aim to fill this gap by providing PlaToL…