0000000000207886

AUTHOR

Paolo Mataloni

showing 4 related works from this author

Readout of quantum information spreading using a disordered quantum walk

2021

We design a quantum probing protocol using quantum walks to investigate the quantum information spreading pattern. We employ quantum Fisher information as a figure of merit to quantify extractable information about an unknown parameter encoded within the quantum walk evolution. Although the approach is universal, we focus on the coherent static and dynamic disorder to investigate anomalous and classical transport as well as Anderson localization. We provide a feasible experimental strategy to implement, in principle, the quantum probing protocol based on the quantum Fisher information using a Mach–Zehnder-like interferometric setup. Our results show that a quantum walk can be considered as …

PhysicsQuantum WalkQuantum networkAnderson localizationStatistical and Nonlinear Physicsquantum walks quantum metrology quantum interference disordered dynamicsQuantum Fisher informationSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and Opticslaw.inventionlawQuantum metrologyFigure of meritQuantum InformationQuantum walkStatistical physicsQuantum informationQuantum MetrologyQuantumBose–Einstein condensateJournal of the Optical Society of America B
researchProduct

Enhancing nonclassical bosonic correlations in a Quantum Walk network through experimental control of disorder

2021

The presence of disorder and inhomogeneities in quantum networks has often been unexpectedly beneficial for both quantum and classical resources. Here, we experimentally realize a controllable inhomogenous Quantum Walk dynamics, which can be exploited to investigate the effect of coherent disorder on the quantum correlations between two indistinguishable photons. Through the imposition of suitable disorder configurations, we observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network, compared to the case of an ordered Quantum Walk. Different configurations of disorder can steer the system towards different realizations of such an enha…

PhysicsExperimental controlQuantum networkQuantum WalkQuantum PhysicsPhotonFOS: Physical sciencesQuantum NetworkDynamical Disorder01 natural sciencesSettore FIS/03 - Fisica Della Materia010309 opticsquantum walk quantum correlations bosonic correlations quantum opticsIndistinguishabilityQuantum mechanics0103 physical sciencesQuantum walk010306 general physicsQuantum Physics (quant-ph)Quantum
researchProduct

Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics

2015

In many applications entanglement must be distributed through noisy communication channels that unavoidably degrade it. Entanglement cannot be generated by local operations and classical communication (LOCC), implying that once it has been distributed it is not possible to recreate it by LOCC. Recovery of entanglement by purely local control is however not forbidden in the presence of non-Markovian dynamics, and here we demonstrate in two all-optical experiments that such entanglement restoration can even be achieved on-demand. First, we implement an open-loop control scheme based on a purely local operation, without acquiring any information on the environment; then, we use a closed-loop s…

non-Markovian dynamicsComputer scienceFOS: Physical sciencesMarkov processQuantum entanglementquantum entanglementTopologyArticleSettore FIS/03 - Fisica Della MateriaMultidisciplinary; quantum information; quantum entanglement; open quantum systemsEntanglementsymbols.namesakeNon Markovian dynamicsquantum informationOn demandquantum opticsQuantumQuantum networkLOCCQuantum PhysicsEntanglement entanglement recovery non-Markovian dynamicsMultidisciplinaryHidden entanglementTheoryofComputation_GENERALQuantum Physicsopen quantum systemsOutcome (probability)Dynamics (music)Hidden entanglement non-Markovian dynamics quantum optics quantum informationsymbolsQuantum Physics (quant-ph)entanglement recoveryScientific Reports
researchProduct

Suppression law of quantum states in a 3D photonic fast Fourier transform chip

2015

The identification of phenomena able to pinpoint quantum interference is attracting large interest. Indeed, a generalization of the Hong–Ou–Mandel effect valid for any number of photons and optical modes would represent an important leap ahead both from a fundamental perspective and for practical applications, such as certification of photonic quantum devices, whose computational speedup is expected to depend critically on multi-particle interference. Quantum distinctive features have been predicted for many particles injected into multimode interferometers implementing the Fourier transform over the optical modes. Here we develop a scalable approach for the implementation of the fast Fouri…

Genetics and Molecular Biology (all)Photonquantum opticScienceFast Fourier transformintegrated photonics; quantum information; linear optics; FourierphotonicsGeneral Physics and AstronomyPhysics::Optics02 engineering and technologyInterference (wave propagation)01 natural sciencesBiochemistryGeneral Biochemistry Genetics and Molecular BiologySettore FIS/03 - Fisica Della MateriaArticlesymbols.namesakequantumPhysics and Astronomy (all)OpticsQuantum statequantum information0103 physical sciencesboson samplingquantum opticsQuantum information010306 general physicsIntegrated photonic circuitsPhysicsQuantum opticsMultidisciplinaryphotonicbusiness.industryQChemistry (all)General Chemistry021001 nanoscience & nanotechnologyquantum computerFourier transformLawBiochemistry Genetics and Molecular Biology (all); Chemistry (all); Physics and Astronomy (all)symbolsPhotonics0210 nano-technologybusiness
researchProduct