0000000000207911

AUTHOR

Mohamed Hamid

Experimental validation for spectrum cartography using adaptive multi-kernels

This paper validates the functionality of an algorithm for spectrum cartography, generating a radio environment map (REM) using adaptive radial basis functions (RBF) based on a limited number of measurements. The power at all locations is estimated as a linear combination of different RBFs without assuming any prior information about either power spectral densities (PSD) of the transmitters or their locations. The RBFs are represented as centroids at optimized locations, using machine learning to jointly optimize their positions, weights and Gaussian decaying parameters. Optimization is performed using expectation maximization with a least squares loss function and a quadratic regularizer. …

research product

Joint Topology and Radio Resource Optimization for Device-to-Device Based Mobile Social Networks

In this paper, we consider a joint topology and radio resource optimization for device-to-device (D2D) based mobile social networks. The considered social network is an interest based which is modeled as a d -intersection binomial random graph. The Radio network is also modeled as a random graph where an edge between any two distinct nodes is activated with a certain probability that is equivalent to the probability of exceeding a certain signal to interference ratio for that link. The entire network is then modeled as an intersection graph between the social and radio induced graphs. Thereafter, network topology is optimized such that enabled social edges satisfy certain network connectivi…

research product

Spectrum sensing challenges: blind sensing and sensing optimization

By any measure, wireless communications is one of the most evolving fields in engineering. This, in return, has imposed many challenges, especially in handling the hunger for higher data rates in the next generation wireless networks. Among these challenges is how to provide the needed resources in terms of the electromagnetic radio spectrum for these networks. In this regard, cognitive radio (CR) based on dynamic spectrum access (DSA) has been attracting huge attention as a promising solution for more efficient utilization of the available radio spectrum. DSA is based on finding and opportunistically accessing the free-of-use portions of spectrum. To facilitate DSA, spectrum sensing can be…

research product

Implementation of a two stage fully-blind self-adapted spectrum sensing algorithm

In this paper, an experimental validation of a combined two-stage detector called 2EMC is carried out. The detector is proposed in [1]. The 2EMC is composed of energy detector as a primary stage and maximum-minimum eigenvalue detector as a secondary stage. The 2EMC outperforms the two individual detectors in terms of the probability of detection for the same probability of false alarm. Regarding the complexity measured in the sensing time, the 2EMC sensing time is bounded by the sensing times of the two individual detectors. 2EMC incorporates noise estimation that is used by the energy detector, which makes it fully-blind and self-adapted detector. The noise estimator performance is express…

research product

Towards Risk-aware Access Control Framework for Healthcare Information Sharing

research product

Non-parametric spectrum cartography using adaptive radial basis functions

This paper presents a framework for spectrum cartography based on the use of adaptive Gaussian radial basis functions (RBF) centered around a specific number of centroid locations, which are determined, jointly with the other RBF parameters, by the available measurement values at given sensor locations in a specific geographical area. The spectrum map is constructed non-parametrically as no prior knowledge about the transmitters is assumed. The received signal power at each location (over a given bandwidth and time period) is estimated as a weighted contribution from different RBF, in such a way that the both RBF parameters and the weights are jointly optimized using an alternating minimiza…

research product

Radio measurements on a customized software defined radio module: A case study of energy detection spectrum sensing

In this paper, we developed a software defined radio (SDR) system for implementing energy detection spectrum sensing. The SDR module can be used for a wide range of applications. The use of the SDR module is motivated by its high interoperability, availability for relatively cheaper prices and being software independent. Energy detection for cognitive radios is chosen for its simplicity and popularity. However, it is chosen as a representative for a very wide range of measurements and algorithms that can be implemented in the SDR. We have used probabilities of detection and false alarm with the receiver operating characteristics (ROC) curves as performance metrics for the implemented energy…

research product

Underlay Device-to-Device Communications on Multiple Channels

Author´s accepted manuscript (postprint). © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Since the spectral efficiency of wireless communications is already close to its fundamental bounds, a significant increase in spatial efficiency is required to meet future traffic demands. Device-to-device (D2D) communications provide such an increase by allowing nearby u…

research product

Spectrum cartography using adaptive radial basis functions: Experimental validation

In this paper, we experimentally validate the functionality of a developed algorithm for spectrum cartography using adaptive Gaussian radial basis functions (RBF). The RBF are strategically centered around representative centroid locations in a machine learning context. We assume no prior knowledge about neither the power spectral densities (PSD) of the transmitters nor their locations. Instead, the received signal power at each location is estimated as a linear combination of different RBFs. The weights of the RBFs, their Gaussian decaying parameters and locations are jointly optimized using expectation maximization with a least squares loss function and a quadratic regularizer. The perfor…

research product

Self-Powered IoT Device for Indoor Applications

This paper presents a proof of concept for selfpowered Internet of Things (IoT) device, which is maintenance free and completely self-sustainable through energy harvesting. These IoT devices can be deployed in large scale and placed anywhere as long as they are in range of a gateway, and as long as there is sufficient light levels for the solar panel, such as indoor lights. A complete IoT device is designed, prototyped and tested. The IoT device can potentially last for more than 5 months (transmission interval of 30 seconds) on the coin cell battery (capacity of 120mAh) without any energy harvesting, sufficiently long for the dark seasons of the year. The sensor node contains ultra-low pow…

research product