0000000000208035
AUTHOR
Jean-michel Hartmann
Model, software and database for line-mixing effects in the ν3 and ν4 bands of CH4 and tests using laboratory and planetary measurements-I: N2(and air) broadenings and the earth atmosphere
International audience; Absorption spectra of the infrared ν3 and ν4 bands of CH4 perturbed by N2 over large ranges of pressure and temperature have been measured in the laboratory. A theoretical approach accounting for line mixing is proposed to (successfully) model these experiments. It is similar to that of Pieroni et al. [J Chem Phys 1999;110:7717–32] and is based on state-to-state rotational cross-sections calculated with a semi-classical approach and a few empirical parameters. The latter, which enable switching from the state space to the line space, are deduced from a fit of a single room temperature spectrum of the ν3 band at 50 atm. The comparisons between numerous measured and ca…
Field-free molecular alignment for probing collisional relaxation dynamics
International audience; We report the experimental study of field-free molecular alignment in CO2 gas mixtures induced by intense femtosecond laser pulses in the presence of collisional processes. We demonstrate that the alignment signals exhibit specific features due to nontrivial collisional propensity rules that tend to preserve the orientation of the rotational angular momentum of the molecules. The analysis is performed with a quantum approach based on the modeling of rotational J- and M-dependent state-to-state transfer rates. The present work paves the way for strong-field spectroscopy of collisional dynamics.
Probing ultrafast thermalization with field-free molecular alignment
International audience; The rotation-translation thermalization of CO2 gas is investigated 500 ps after its preheating by a nonresonant short and intense laser pulse. The temperature of thermalization is optically determined with two additional short laser pulses enabling a field-free molecular alignment process and its probing, respectively. The measurements are performed for various intensities of the preheat pulse, leading to the observation of different temperatures which are in very good agreement with classical molecular dynamics simulations. The results can be regarded as a step towards real-time tracking of ultrafast relaxation pathways in molecular motion.
Using molecular alignment to track ultrafast collisional relaxation
Field-free molecular alignment has been used in order to track the collisional relaxation occurring in a molecular gas. CO${}_{2}$ molecules were initially irradiated by a short linearly polarized laser pulse resulting in the increase of their rotational energy. The evolution of the subsequent ultrafast relaxation process was optically probed after irradiating the sample with a second, weaker, short pulse leading to the alignment of the preheated molecules. Using classical molecular dynamic simulations, we were able to quantitatively reproduce the experimental shapes and amplitudes of the recorded revival transients for a time interval extending from 25 to 500 ps until thermalization of the…
Ab initio calculations for the far infrared collision induced absorption by N2 gas
We present (far-infrared) Collision Induced Absorption (CIA) spectra calculations for pure gaseous N2 made for the first time, from first-principles. They were carried out using classical molecular dynamics simulations based on ab initio predictions of both the intermolecular potential and the induced-dipole moment. These calculations reproduce satisfactory well the experimental values (intensity and band profile) with agreement within 3% at 149 K. With respect to results obtained with only the long range (asymptotic) dipole moment (DM), including the short range overlap contribution improves the band intensity and profile at 149 K, but it deteriorates them at 296 K. The results show that t…
Echo-assisted impulsive alignment of room-temperature acetone molecules
International audience; We experimentally and theoretically investigate the field-free alignment of the asymmetric-top acetone molecule. Our study shows that the production of postpulse aligned molecules in a dense sample (0.05-0.2 bar) of room-temperature acetone using a single-pulse excitation can be significantly improved by rotational alignment echoes induced in a two-pulse excitation scheme. We report the observation of fractional echoes that can be used to reveal the nonlinearity of the molecular system. In a proof-of-principle experiment, a pre-aligned sample of acetone is also used for third-harmonic generation. The analysis of the experimental data with numerical simulations based …
Model, software and database for line-mixing effects in the nu3 and nu4 bands of CH4 and tests using laboratory and planetary measurements - II : H2 (and He) broadening and the atmospheres of Jupiter and Saturn
International audience; The absorption shapes of the nu(2), nu(3) and nu(4) infrared bands of CH4 perturbed by H-2 in large ranges of pressure and temperature have been measured in the laboratory. In order to model these spectra, the theoretical approach accounting for line-mixing effects proposed for CH4-N-2 and CH4-air and successfully tested in the companion paper (1), is used. As before, state-to-state rotational rates are used together with some empirical parameters that are deduced from a fit of a single room temperature spectrum of the nu(3) band at about 50 atm. The comparisons between measured and calculated spectra in the nu(3) and nu(4) regions under a vast variety of conditions …
Orientation and Alignment Echoes
We present one of the simplest classical systems featuring the echo phenomenon---a collection of randomly oriented free rotors with dispersed rotational velocities. Following excitation by a pair of time-delayed impulsive kicks, the mean orientation or alignment of the ensemble exhibits multiple echoes and fractional echoes. We elucidate the mechanism of the echo formation by the kick-induced filamentation of phase space, and provide the first experimental demonstration of classical alignment echoes in a thermal gas of ${\mathrm{CO}}_{2}$ molecules excited by a pair of femtosecond laser pulses.
Experimental and theoretical study of line mixing in methane spectra. III. The Q branch of the Raman nu(1) band
International audience; The shape of the nu(1) Raman Q branch of CH4 perturbed by Ar and He at room temperature has been studied. Stimulated Raman spectroscopy (SRS) experiments have been made in the 2915-2918 cm(-1) spectral region for total pressures from 0.4 to 70 atm and mixtures of approximate to 5% CH4 with He and Ar. Analysis of the spectra demonstrates that the shape of the Q branch is significantly influenced by line mixing and much narrower than what is predicted by the addition of individual line profiles. For the first time, a model is proposed for the calculation and analysis of the effects of collisions on the considered spectra. In this approach, the rotational part of the re…
The 1997 spectroscopic GEISA databank
International audience; The current version GEISA-97 of the computer-accessible database system GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information) is described. This catalogue contains 1,346,266 entries. These are spectroscopic parameters required to describe adequately the individual spectral lines belonging to 42 molecules (96 isotopic species) and located between 0 and 22,656 cm-1. The featured molecules are of interest in studies of the terrestrial as well as the other planetary atmospheres, especially those of the Giant Planets. GEISA-97 contains also a catalog of absorption cross-sections of molecule…
Ultrafast collisional dissipation of symmetric-top molecules probed by rotational alignment echoes
We experimentally and theoretically investigate the ultrafast collisional dynamics of a symmetric-top molecule (${\mathrm{C}}_{2}{\mathrm{H}}_{6}$) in pure gas and mixtures with He at high density by employing the rotational alignment echo created by a pair of time-delayed intense laser kicks. The decrease of the amplitude of the echo when increasing the delay between the two laser pulses, reflecting the collisional relaxation of the system, is measured by probing the transient birefringence induced in the medium. The theoretical predictions, carried using purely classical molecular dynamics simulations, reproduce well the observed features, as demonstrated previously for a linear molecule.…
Rotational echoes as a tool for investigating ultrafast collisional dynamics of molecules
We show that recently discovered rotational echoes of molecules provide an efficient tool for studying collisional molecular dynamics in high-pressure gases. Our study demonstrates that rotational echoes enable the observation of extremely fast collisional dissipation, at timescales of the order of a few picoseconds, and possibly shorter. The decay of the rotational alignment echoes in ${\mathrm{CO}}_{2}$ gas and ${\mathrm{CO}}_{2}\text{\ensuremath{-}}\mathrm{He}$ mixture up to 50 bar was studied experimentally, delivering collision rates that are in good agreement with the theoretical expectations. The suggested measurement protocol may be used in other high-density media, and potentially …
Dissipation of post-pulse laser-induced alignment of CO2through collisions with Ar
In this paper, laser-induced field-free alignment of CO2 in mixtures with Ar is investigated under dissipative conditions (up to 15 bars) at room temperature. The degree of alignment is temporally monitored by a polarization spectroscopy technique, where a weak probe pulse measures the transient birefringence resulting from the alignment. The data are analyzed with a quantum mechanical density matrix formalism using properly J-dependent and M-dependent state-to-state transfer rates, which was previously successfully tested on pure CO2 and CO2–He mixtures. The same consistency is obtained between experiments and calculations, in particular the decay times of both the transient revivals and t…
Experimental and theoretical study of line mixing in methane spectra. III. The Q branch of the Raman ν1 band
The shape of the ν1 Raman Q branch of CH4 perturbed by Ar and He at room temperature has been studied. Stimulated Raman spectroscopy (SRS) experiments have been made in the 2915–2918 cm−1 spectral region for total pressures from 0.4 to 70 atm and mixtures of ≈5% CH4 with He and Ar. Analysis of the spectra demonstrates that the shape of the Q branch is significantly influenced by line mixing and much narrower than what is predicted by the addition of individual line profiles. For the first time, a model is proposed for the calculation and analysis of the effects of collisions on the considered spectra. In this approach, the rotational part of the relaxation matrix is constructed, with no adj…
Molecular alignment echoes probe collision-induced rotational-speed changes
International audience; We show that the decays with pressure of the rotational alignment echoes induced in N 2 O-He gas mixtures by two ultrashort laser pulses with various delays show detailed information about collision-induced changes of the rotational speed of the molecules. Measurements and classical calculations consistently demonstrate that collisions reduce the echo amplitude all the more efficiently when the echo appears late. We quantitatively explain this behavior by the filamentation of the classical rotational phase space induced by the first pulse and the narrowing of the filaments with time. The above mentioned variation of the echo decay then reflects the ability of collisi…