0000000000208047

AUTHOR

S. Zankovych

showing 2 related works from this author

Nanoimprint lithography for organic electronics

2002

Thin films made of organic semiconductors (α-sexithiophene, PDAS and PBAS) have been printed and the impact on morphology studied by optical, atomic force and electron microscopy. Surfaces in contact with the stamp during printing undergo a change towards smoother and more ordered material at the macromolecular scale. Interdigitated nanoelectrodes to be used as source and drain in TFTs have been made and printed down to 100 nm. PDAS and PBAS can be printed at room temperature and preserve their printed feature provided they are cross-linked afterwards.

Organic electronicsMaterials scienceNanoimprint lithography; Oligothiophenes; Triaraylamines;oligothiophenesNanotechnologyCondensed Matter PhysicsAtomic and Molecular Physics and OpticsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsNanoimprint lithographylaw.inventionOrganic semiconductorlawtriaraylaminesNanoimprint lithogrananoimprint lithographyElectrical and Electronic EngineeringThin filmMicroelectronic Engineering
researchProduct

Towards Plastic Electronics: Patterning Semiconducting Polymers by Nanoimprint Lithography

2002

The direct patterning of functional semiconducting polymers (see Figure) has been achieved with a nanoimprint lithography technique. The room‐temperature process described is time‐saving as repeated temperature cycling is not required. In addition, due to the direct patterning approach the need for further processing steps (plasma treatment) to pattern the underlying semiconducting material is eliminated.

chemistry.chemical_classificationMaterials sciencebusiness.industryMechanical EngineeringNanotechnologyPolymerNanoimprint lithographylaw.inventionchemistryMechanics of MaterialslawOptoelectronicsGeneral Materials SciencebusinessPlastic electronicsAdvanced Materials
researchProduct