0000000000208092
AUTHOR
Caroline Nicol
Muscle-tendon architecture in Kenyans and Japanese : Potential role of genetic endowment in the success of elite Kenyan endurance runners
Aim The specificity of muscle-tendon and foot architecture of elite Kenyan middle- and long-distance runners has been found to contribute to their superior running performance. To investigate the respective influence of genetic endowment and training on these characteristics, we compared leg and foot segmental lengths as well as muscle-tendon architecture of Kenyans and Japanese males (i) from infancy to adulthood and (ii) non-athletes versus elite runners. Methods The 676 participants were divided according to their nationality (Kenyans and Japanese), age (nine different age groups for non-athletes) and performance level in middle- and long-distance races (non-athlete, non-elite and elite …
Stretch‐Shortening Cycle of Muscle Function
Stretch‐Shortening Cycle Fatigue
Specific muscle-tendon architecture in elite Kenyan distance runners
The Achilles tendon moment arm (MA_AT) and foot lever ratio (FLR) can play important roles for force production and movement economy during locomotion. This notion has become more relevant, and suggestion has been given that the Kenyan runners belonging to the world elite would have specific anatomical, mechanical, and functional properties in their lower limbs and that this feature could be responsible for their high running economy. The present study aimed to characterize the AT of elite Kenyan distance runners as compared with Japanese ones, and to examine the potential relationship with their running performance. Ultrasonography was used to measure AT cross-sectional area and AT soleus …
Adaptive changes in motor control of rhythmic movement after maximal eccentric actions.
Effects of an exhaustive eccentric exercise (EE) on the motor control of maximal velocity rhythmic elbow extension/flexion movement (RM) were examined in eight male students. The exhaustive EE consisted of 100 maximal eccentric actions of the elbow flexor muscles. Movement range was 40-170 degrees in EE at an angular velocity of 2rads(-1). A directive scaled RM of 60 degrees with visual feedback was performed in a sitting position, with the right forearm fixed to the lever arm in horizontal plane above protractor. Surface electromyographic activity (EMG) was recorded from the biceps brachii (BB) and triceps brachii (TB) muscles. Maximal isokinetic eccentric and concentric tests and RM test …
Neuromuscular control in landing from supra-maximal dropping height.
International audience; The present study utilized high-impact supra-maximal landings to examine the influence of the pre-impact force level on the post-impact electromyographic (EMG) activity and, in particular, on the short latency EMG reflex (SLR) component. Unilateral-leg landings were performed in a sitting position on a sledge apparatus after release from high, but individually constant dropping height. A lower limb guiding device fixed to the front of the sledge seat allowed the subjects to sustain a given pre-set force level up to impact. This force level was either freely chosen or set at 20, 35, and 50% of maximal isometric plantarflexion force. EMG activity was recorded from eigh…
Activation and torque deficits in ACL-reconstructed patients 4 months post-operative
This study compares knee extension and flexion torques and electromyographic (EMG) activity of normal and anterior cruciate ligament (ACL)-reconstructed knees during maximal unilateral isometric and isokinetic tests performed 4–5 months after ACL reconstruction. The subjects consisted of 3 age- and activity-matched groups of 6 subjects: a healthy control group (Ctrl) and 2 groups of patients, with Kenneth-Jones technique using autologous patellar-ligament graft (KJ group) and autologous graft from the semitendinosus tendon (ST group). When compared to the Ctrl group values, each patient group had significant bilateral extension torque deficits in isometric and at slow velocity concentric co…
Effects of long- and short-term fatiguing stretch-shortening cycle exercises on reflex EMG and force of the tendon-muscle complex
This study examined the fatigue effects of stretch-shortening cycle exercises of different intensity and duration on stretch reflex EMG and mechanical responses of the triceps surae muscle. Twelve subjects performed either a 10-km run ( n=6) or short but exhaustive rebound exercise on a sledge apparatus ( n=6). Passive reflex tests (mechanically induced ankle dorsiflexions) were examined before, after as well as 2 h, 2 and 7 days after exercise. Mechanical reflex responses were recorded from the ergometer torque signal. An acute contractile failure was observed as large reductions in twitch responses, especially in the sledge subgroup who showed high post-exercise peak blood lactate and an …
Motor unit activation patterns during isometric, concentric and eccentric actions at different force levels.
Motor unit activation patterns were studied during four different force levels of concentric and eccentric actions. Eight male subjects performed concentric and eccentric forearm flexions with the movement range from 100 degrees to 60 degrees in concentric and from 100 degrees to 140 degrees elbow angle in eccentric actions. The movements were started either from zero preactivation or with isometric preactivation of the force levels of 20, 40, 60 and 80% MVC. The subjects were then instructed to maintain the corresponding relative force levels during the dynamic actions. Intramuscular and surface EMG was recorded from biceps brachii muscle. Altogether 28 motoneuron pools were analyzed using…
Acute and prolonged reduction in joint stiffness in humans after exhausting stretch-shortening cycle exercise.
The purpose of the present study was to examine the acute and long-term fatigue effects of exhausting stretch-shortening cycle (SSC) exercise on the stiffness of ankle and knee joints. Five subjects were fatigued on a sledge apparatus by 100 maximal rebound jumps followed by continuous submaximal jumping until complete exhaustion. Neuromuscular fatigue ef- fects were examined in submaximal hopping (HOP) and in maximal drop jumps (DJ) from 35 (DJ35) and 55 cm (DJ55) heights on a force plate. Additional force and reflex measurements were made using an ankle ergom- eter. Jumping tests and ankle ergometer tests were car- ried out before, immediately after, 2 h (2H), 2 days and 7 days (7D) after…
Plasma catecholamine responses to four resistance exercise tests in men and women
The plasma adrenaline ([A]) and noradrenaline ([NA]) concentration responses of nine men and eight women were investigated in four resistance exercise tests (E80, E60, E40 and E20), in which the subjects had to perform a maximal number of bilateral knee extension-flexion movements at a given cycle pace of 0.5 Hz, but at different load levels (80%, 60%, 40% and 20% of 1 repetition maximum, respectively). The four test sessions were separated by a minimal interval of 3 rest days. The number of repetitions (Repmax), the total work (Wtot) done normalized for the lean body mass and the heart rate (HR) responses were similar in the two groups in each test. In addition, no differences were found b…
The Stretch-Shortening Cycle
Neuromuscular fatigue has traditionally been examined using isolated forms of either isometric, concentric or eccentric actions. However, none of these actions are naturally occurring in human (or animal) ground locomotion. The basic muscle function is defined as the stretch-shortening cycle (SSC), where the preactivated muscle is first stretched (eccentric action) and then followed by the shortening (concentric) action. As the SSC taxes the skeletal muscles very strongly mechanically, its influence on the reflex activation becomes apparent and very different from the isolated forms of muscle actions mentioned above. The ground contact phases of running, jumping and hopping etc. are example…
Economical running strategy for East African distance runners
The superior success of East-African endurance runners has stimulated a large amount of interest in exploring valid reasons for their performance, especially for neuromuscular mechanics. This review provides a brief overview of classic neuromuscular interaction during running; and, thereafter, describes a specific neuromuscular interaction alternative to the classic stretch-shortening cycle concept for enhancing the running economy of East-African distance runners.